

Elizabeth Ashton

Elizabeth Ashton Research Associate at Loughborough University

Combined battery and electrolyser

Contents

- Introduction current green hydrogen production
- Combined battery and electrolyser
- Application
- LoCEL-H₂ project
- Technology development
- Conclusion future plans

Colours of Hydrogen

**SMR = steam methane reformation*

1.

2.

3.

4.

5.

Green Hydrogen

Electrolyser – economics

Element	Approx.	Global	Cost \$/g [2]	CO ₂ used in extraction
	abunuance mg/1	-[-]		
Platinum	0.005		\$27	12,500kg CO _{2e} /kg
Iridium	0.001		\$196	8,860kg CO _{2e} /kg
Lead	14		\$0.002	1.3kg CO _{2e} /kg

- Annual production of Iridium & Platinum only able to support 3-7.5GW of electrolyser production annually [4].
- Using significant amounts of these materials to scale up production goes against the government mandate to reduce scarce material utilisation.
- Most electrolysis units are manufactured at around 1MW, however, there are plans for a 20MW trial unit.
- Other methods are at trial stage and not close to commercialisation

COMBINED BATTERY AND ELECTROLYSER

Combined battery and electrolyser

Lead acid battery technology allows the cell to charge and discharge as a battery

Electrolysis occurs when the cell is over charged – splitting water from the electrolyte into H_2 and O_2 gas.

Hydrogen gas is collected at the negative electrode as a method of chemical energy storage during excess renewable energy production

Renewable energy is stored either as electrical energy in the battery or chemical energy as hydrogen gas

Funded by

Combined battery and electrolyser

Battery

Cathode: $Pb + SO_4^{2-} \leftrightarrow PbSO_4 + 2H^+ + 2e^-$ ($E^0 = 0.36$ V) H_2 Anode: $PbO_2 + SO_4^{2-} + 4H^+ + 2e^- \leftrightarrow PbSO_4 + 2H_2O \ (E^0 = 1.69 \text{ V})$ O_2 0 0 Overall: $PbO_2 + Pb + 2H_2SO_4 \leftrightarrow 2PbSO_4 + 2H_2O$ ($E^0 = 2.05$ V) Oxygen gas outlet **Electrolyser** Cathode: $2H^+ + 2e^- \rightarrow H_2$

Anode: $H_2O \rightarrow 1/2O_2 + 2H^+ + 2e^-$ Overall: $H_2O \rightarrow 2H_2 + \frac{1}{2}O_2$

Research

England

Research England

Funded by

Lead academic partners

APPLICATIONS

Applications – wind

3.82

There is currently no low-cost electrolyser on the market that works with poor load factor such as renewable generation

In the UK, from January 2021 to April 2023, £1.5 billion was invested to curtail over 6.5 TWh of wind power, resulting in 2.5 million tonnes of CO₂ emissions¹

https://reports.electricinsights.co.uk/q4-2020/record-wind-output-and-curtailment/

Lead academic partners

Applications – solar

There is currently no low-cost electrolyser on the market that works with poor load factor such as renewable generation

In Africa, about 1 billion people rely on polluting fuels, like wood, charcoal and kerosene for cooking, lighting and heating.

This causes around 700,000 premature deaths yearly—10% of total mortality in the region.

https://www.nihr.ac.uk/case-studies/clean-air-africa (accessed 30 December 2023)

Lead academic partners

LOCEL-H2 PROJECT

Hydrogen Winter School – Loughborough University

Two pilot programs, one located in Zambia and the other in the Ivory Coast.

Hydrogen Winter School – Loughborough University

LoCEL - H₂ Project

LoCEL-H2 Consortium

Hollingsworth & Vose[®] Creating a Cleaner World[®] HOPPECKE

Loughborough

A Not-for-Profit University

A CONTRACTOR OF THE OWNER

TECHNOLOGY DEVELOPMENT

Combined battery electrolyser video

Laboratory set-up

- New laboratory set up.
- Installation of fume hoods, sockets, power supply and load banks.
- Three full scale cells now in operation.
- Multiple cell testing with automated operation and gas measurement.

Cell design and manufacture

- Scaled up small pre-Locel-H2 test cells.
- Three full scale cells now in operation.

- Electrolyte composition including additive composition determined.
- Manufacturing process optimised.

Improvements to lid design

Lead academic partners

3D PRINTED LID DESIGN

Lead academic partners

BEX

Warping issues using PP

Electrode optimisation

labyrinth and weld

Positive electrode

GC analysis of oxygen

GC analysis of hydrogen

Lead aca partners

GC analysis of Hoppecke battery – without gas separation

Lead academic partners

ODEX

Durability and performance testing

- Three full scale cells now in operation under different operating regimes. •
- Automated cell cycling and data collection.
- No degradation yet recorded.

England

partners

Kee

UNIVERSITY

INNOVATION

OEX

Cell 001 – Operated as a battery

Table 1- Capacity as a function of discharge rate

- H.												
	Туре	C ₁₀₀ /1.85 V	C ₅₀ /1.85 V	C ₂₄ /1.83 V	C ₁₀ /1.80 V	C ₅ /1.77 V	max. Weight	Weight electrolyte	max.* Length L	max.* Width W	max.* Height H	Fig.
		Ah	Ah	Ah	Ah	Ah	kg	kg (1.24 kg/l)	mm	mm	mm	
	4 OPzS solar.power 280	280	265	245	213	182	17.1	4.5	105	208	420	Α
- 1												

	Capacity							
	C100 / 1.85 V	C50 / 1.85 V	C24 / 1.83 V	C10 / 1.8 V	C5 / 1.7 V			
	(Ah)	(Ah)	(Ah)	(Ah)	(Ah)			
4 OPzS solar.power 280	280	265	245	213	182			
Paula (1 plate pair)	70	66.25	61.25	53.25	45.5			

• C/24 2.55 A slow charge and discharge - 136.10 Wh (61.41 Ah) OCV every 30 mins.

BDEX Electrochemical Impedance Spectroscopy (EIS)

EIS initial frequency of 9400 Hz and final frequency of 0.1 Hz

800

Electrolysis of cell 003

29

Electrolysis PSOC testing – 2.9 V starting at 50 % SOC

partners

Electrolysis PSOC testing – 2.9 V starting at 50 % SOC

Average current (A)	Rate of Hydrogen production (cm ³ s ⁻¹)
17	0.63
7	0.67
5.5	0.70

Visit to West Groton – H&V

Testing of Nickel sulphate, Cobalt sulphate, Iron sulphate and Manganese sulphate and antimony sulphate 1-500 ppm

3 weeks of testing

Visit to West Groton – H&V

Testing of Nickel sulphate, Cobalt sulphate, Iron sulphate and Manganese sulphate and antimony sulphate 1-500 ppm

- 1. below 1 ppm for tellurium, antimony, arsenic, cobalt, and nickel;
- 2. 2. below 3 ppm for manganese;
- 3. 3. below 160 ppm for iron;
- 4. 4. below 500 ppm for aluminum, bismuth, cerium, chromium, copper, molybdenum, silver, and vanadium;
- 5. 5. below 5000 ppm for barium, cadmium, calcium, chlorine, lithium, mercury, phosphorus, tin, and zinc.

Contaminant	Gas Generated (cm ³)	Contaminant	Gas Generated (cm ³)
Aluminum	306.4	Iron	309.7
Antimony	2557.3	Lithium	258.4
Arsenic	626.2	Manganese	936.2
Barium	193.0	Mercury	194.2
Bismuth	916.0	Molybdenum	911.6
Cadmium	243.7	Nickel	1076.4
Calcium	172.5	Phosphorus	171.4
Cerium	286.4	Silver	285.8
Chlorine	266.4	Tellurium	1498.4
Chromium	571.8	Tin	179.2
Cobalt	5500.8	Vanadium	635.6
Copper	530.4	Zinc	218.4

Note: The standard cells averaged a value of 230.5 cm³ of gas generated during the 4-h period.

Reference: J.R. Pierson, C.E. Weinlein, C.E. Wright, in: D.H. Collins (Ed.), Power Sources 5, Academic Press, London, UK, 1975, p. 97

Design of Experiments – Simple Centroid Design

BEX

Design of Experiments (DOE) – testing mixtures of the additives to determine any combination effects using Simplex Centroid Design.

Research

England

Funded by

Exp No	Exp Name	Run Order	Incl/Excl	ni	Со	sb	voltage
1	N1	11	Incl	1	0	0	-1.54251
2	N2	5	Incl	0	1	0	-1.60555
3	N3	4	Incl	0	0	1	-1.54743
4	N4	2	Incl	0.5	0.5	0	-1.53908
5	N5	12	Incl	0.5	0	0.5	-1.58893
6	N6	10	Incl	0	0.5	0.5	-1.53908
7	N7	8	Incl	0.666667	0.166667	0.166667	-1.50554
8	N8	3	Incl	0.166667	0.666667	0.166667	-1.54647
9	N9	6	Incl	0.166667	0.166667	0.666667	-1.56893
10	N10	1	Incl	0.333333	0.333333	0.333333	-1.53016
11	N11	7	Incl	0.333333	0.333333	0.333333	-1.52524
12	N12	9	Incl	0.333333	0.333333	0.333333	-1.52308

Total of 100 ppm e.g 66.7ppm Ni 16.7ppm Sb 16.67ppm Co

Catalysts for hydrogen evolution

Table 1: H_2 production from lead acid batteries when metal impurities are present at 5000 ppm or saturations level³

Elements	Maximum allowance	Gas generated
	(ppm)	(cm³)
Ni	1	1076.4
Со	1	5500.8
Sb	1	2557.3
Fe	160	309.7
Mn	3	936.2
Те	1	1498.4

Note: The standard cells averaged a value of 230.5 cm³ of gas generated during the 4 h period.

- Increasing cost with uptake of renewables
- Cheap and abundant, non-toxic
- Rate metals (not viable)

Manufacture of cell 004 – ABS separator and springs

Lead academic partners

NEXT STEPS

Manufacture of next 22 cells

Component	Parts made	Parts remaining
Plates soldered to terminals	44	0
lids	22	0
separators	14	30
Impaction separators	44	0
H&V separators	22	0
H&V AGM	22	0
Floats	2	42
Water fill	4	18
Logo and terminal ID	22	0
Pressure clips	28	412

Lead academic partners

02

Future plans

Arrival of the two 20ft containers

Lead academic partners

Meet the team

Professor Dani Strickland Professor of Electrical Power Engineering

Dr Jonathan Wilson Lecturer in Systems and Mechanical Engineering

Dr John Barton Senior Research Associate

Dr Elizabeth Ashton Senior Research Associate

Matthew Brenton PhD Researcher

Multidisciplinary approach

Conclusions

- **Battery technology:** Using lead acid battery technology we have successfully develop a combined battery and electrolyser.
- **Green H₂:** excess renewable energy can be used to generate water via electrolysis when over charging the battery cell.
- **Manufacture**: We have developed the combine battery and electrolyser cell design from lab scale to full scale, using off the shelf and bespoke 3D printed parts.
- **Pilot scale:** We are now in the process of manufacturing the next 22 cells for testing, before deploying 168 cells in Zambia and the Ivory Coast.

Co-funded by the European Union

Thank you

Funded by Research England

Lead academic partners

Elizabeth Ashton

Elizabeth Ashton Research Associate at Loughborough University

Combined battery and electrolyser

