Hydrogen Winter School – University of Birmingham

# **Robert Steinberger-**Wilckens

Centre for Fuel Cell & Hydrogen Research, University of Birmingham

# **L**

Fuel cells for transport applications &

Hydrogen fuel infrastructure



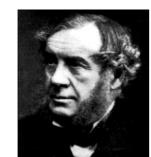
Research England

partners





Fr. Wilh. Ostwald

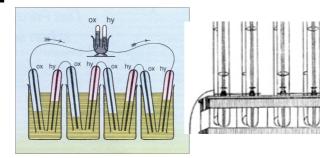

1853-1932



UNIVERSITYOF

1

#### **Fuel Cell History: Invention**

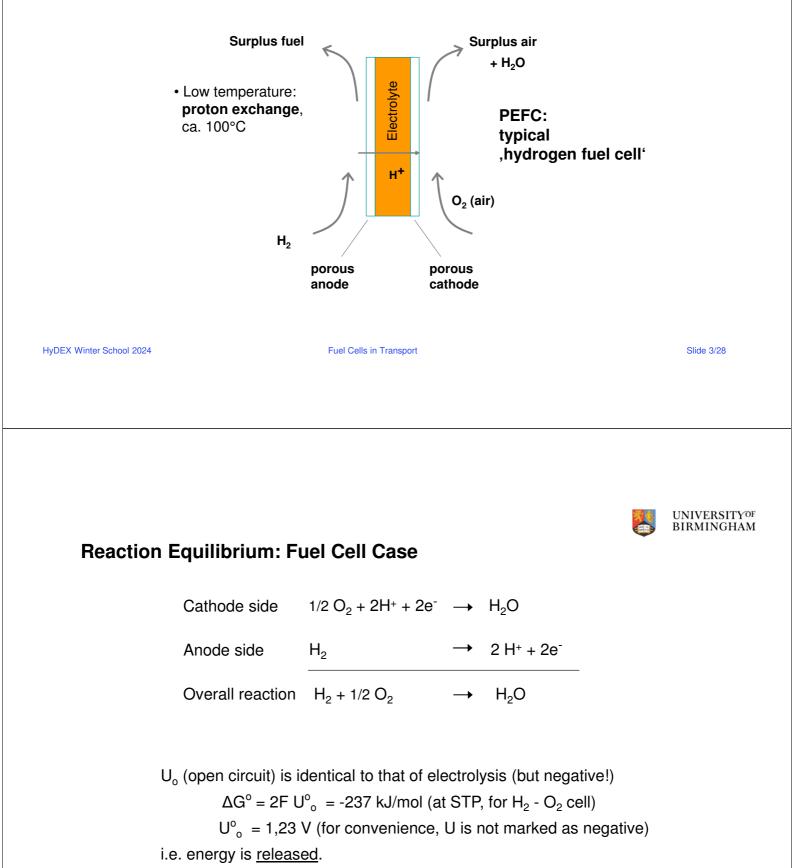





Sir William Grove 1811-1896 Christian Friedrich Schönbein 1799 -1868

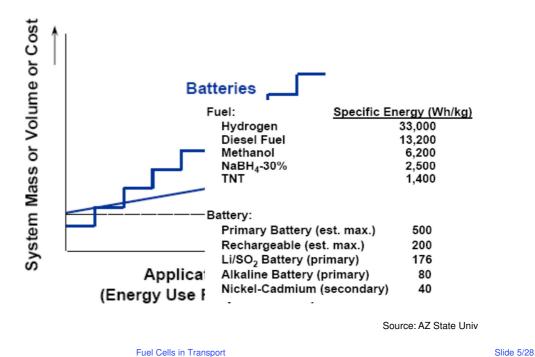
Fundamentals of fuel cell principle:

- Reciprocal process to electrolysis: hydrogen and ٠ oxygen gasses recombine, producing electricity
- A battery in ,permanent' operation






BIRMINGHAM

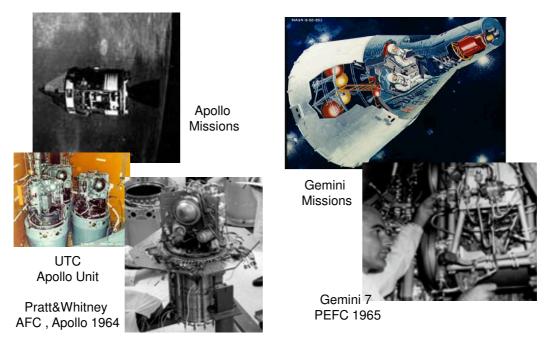



#### Fuel cells for dummies





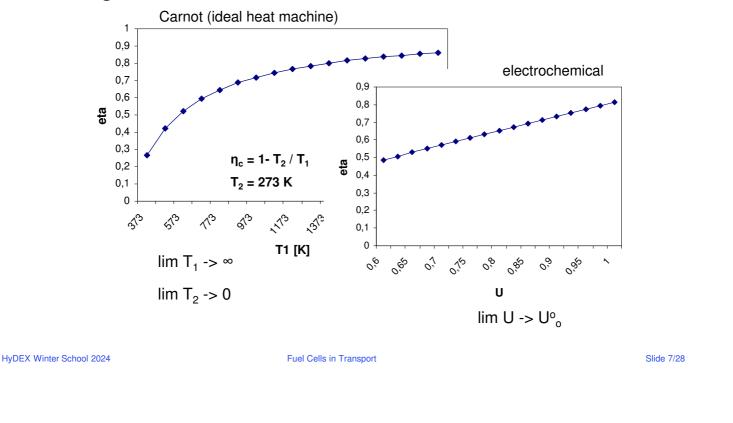
## **Competing with Batteries**




HyDEX Winter School 2024

E E

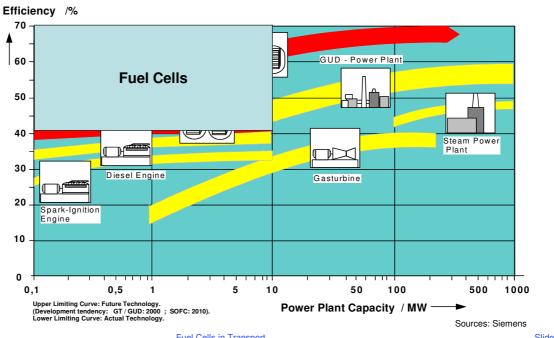
UNIVERSITY<sup>OF</sup> BIRMINGHAM


## Fuel Cell Development in Space



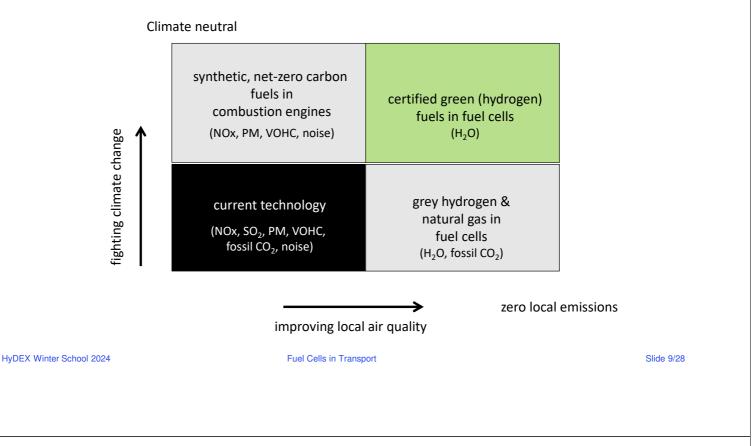
HyDEX Winter School 2024




# **Limiting Efficiencies**

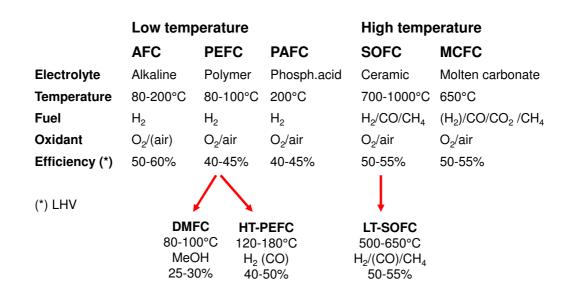





#### UNIVERSITYOF BIRMINGHAM

# **Fuel Cells: High Efficiency Electricity Production**






## **Global vs. Local Zero Emissions**





# **Overview Fuel Cell Types**



# Anatomy of a fuel cell stack





HyDEX Winter School 2024

UNIVERSITY<sup>OF</sup> BIRMINGHAM Key components ponents Fuel c Tank systems ir support structures Engineering Batteries

Sources: Audi, Daimler, Hyundai VW, TU Chemnitz

HyDEX Winter School 2024

Electric motor Fuel Cells in Transport



#### **Toyota Mirai**



#### UNIVERSITY<sup>OF</sup> BIRMINGHAM



- 5 kg of compressed H<sub>2</sub> @ 700 bar = range of ~ 500 km
- 114 kW fuel cell system & small battery, 113 kW electric motor
- Curb weight: 1850 kg
- Top speed: 178 km/h

HyDEX Winter School 2024

Fuel Cells in Transport

source: Toyota, ALF, Chemnitz Univ., Thomas v. Unwerth Slide 14/28

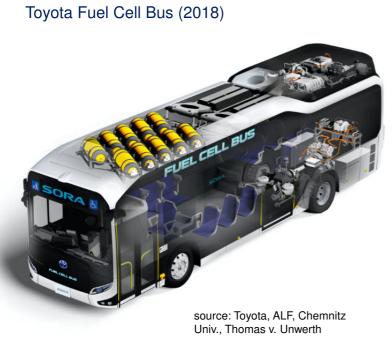
# Hyundai Xcient HDV truck







HyDEX Winter School 2024


| Vehicle                     | Hyundai Xcient Fuel Cell                                               |  |  |
|-----------------------------|------------------------------------------------------------------------|--|--|
| Power                       | 350 kW                                                                 |  |  |
| max. Torque                 | 3.400 Nm                                                               |  |  |
| Gearbox                     | 6-gear + 1 back                                                        |  |  |
| Battery                     |                                                                        |  |  |
| Supplier                    | Akasol                                                                 |  |  |
| Capacity                    | 73,2 kWh                                                               |  |  |
| Wärmemanagement             | Liquid cooled                                                          |  |  |
| Battery voltage             | 661 V                                                                  |  |  |
| Fuel Cell                   |                                                                        |  |  |
| Туре                        | 2x Proton exchange membrane (PEM)                                      |  |  |
| Power FC                    | 190 kW (2x 95 kW)                                                      |  |  |
| Hydrogen storage            | 32,09 kg bei 350 bar                                                   |  |  |
| V max                       | 85 km/h                                                                |  |  |
| Range                       | ca. 400 km                                                             |  |  |
| L x W (without mirrors) x H | 9,745 m/2,515 m/3,730 m                                                |  |  |
| Wheelbase                   | 5,130 m                                                                |  |  |
| Empty weight                | 9,795 t                                                                |  |  |
| Gross weight                | 34 t with trailer, 19 t as box wagon                                   |  |  |
| ells in Transport           | source: Hyundai, ALF, Chemnitz Univ.,<br>Thomas v. Unwerth Slide 15/28 |  |  |

Fuel Cells in Transport



# UNIVERSITY<sup>of</sup> BIRMINGHAM

# FC Buses – design and package samples



| v           | Vehicle                                       | Name                                             | Sora                                        |  |
|-------------|-----------------------------------------------|--------------------------------------------------|---------------------------------------------|--|
|             |                                               | Length / width /<br>height                       | 10,525 / 2,490 / 3,350 mm                   |  |
|             |                                               | Capacity (seated, standing, and driver)          | 79 (22+56+1)                                |  |
| F           | FC stack                                      | Name (type)                                      | Toyota FC Stack (solid polymer electrolyte) |  |
|             |                                               | Maximum output                                   | 114 kW × 2 (155PS × 2)                      |  |
| N           | Motor                                         | Туре                                             | AC synchronous                              |  |
|             |                                               | Maximum output                                   | 113 kW × 2 (154PS × 2)                      |  |
|             |                                               | Maximum torque                                   | 335 N ⋅ m × 2 (34.2 kgf ⋅ m ×<br>2)         |  |
|             | High-pressure<br>hydrogen tank                | Number of<br>tanks (nominal<br>working pressure) | 10 (70 MPa)                                 |  |
|             |                                               | Tank internal volume                             | 600 liters                                  |  |
| D           | rive battery                                  | Туре                                             | Nickel-metal hydride                        |  |
| s           | xternal power<br>upply<br>ystem <sup>*2</sup> | Maximum output<br>/ power supply<br>amount       | 9 kW / 235 kWh                              |  |
| Slide 16/28 |                                               |                                                  |                                             |  |

HyDEX Winter School 2024

Fuel Cells in Transport

# Wrightbus (UK)



- Belfast-based, established 1946
- only manufacturer of double decker FC buses
- Streetdeck (double decker) and GB Kite types
- 27 kg H<sub>2</sub>, 35 Mpa
- battery capacity 48 kWh, plug-in hybrid
- range on hydrogen 250 mi, total range 280 mi



HyDEX Winter

#### China's increasing activities





King Long Buses go into service at Fuzhou 2019 (Fujian Province)





20 Yutong buses for Zhengzhou 2019 (Henan province)

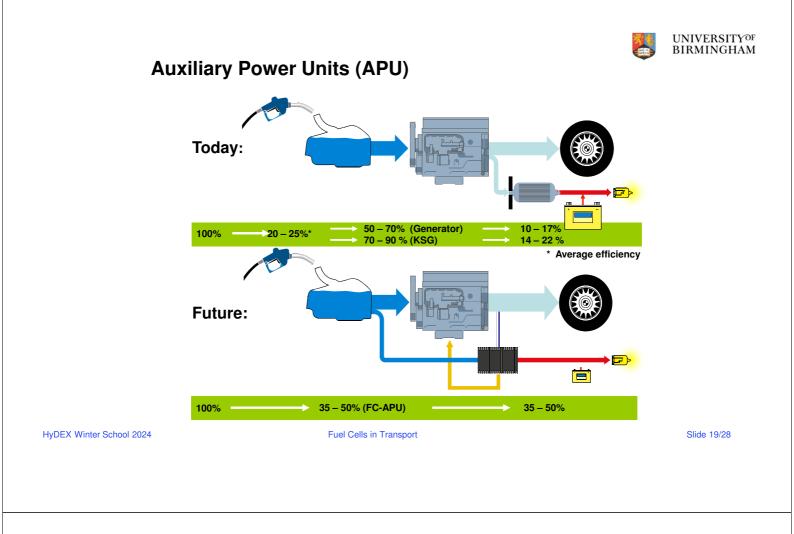




40 Foton buses for Zhangjiakou 2019 (Hebei Province)

Fuel Cells in Transport

UNIVERSITY<sup>OF</sup> BIRMINGHAM


source: ALF, Chemnitz Univ., Thomas v. Unwerth

Yutong Bus, Zhengzhou (100.000 buses / year) Foton Motor, Beijing (70.000 buses / year)



King Long Bus, Xiamen (>10.000 buses / year) Just a sample number for Beijing: ~36.000 conventional buses in service

Slide 18/28





HyDEX Winter School 2024

Fuel Cells in Transport

sources: Delphi, wikipedia & Lloyd's register

Slide 20/28



#### Hydrogen boats

- Ross Barlow canal boat in Birmingham
- · fuel cell and Metal Hydride storage



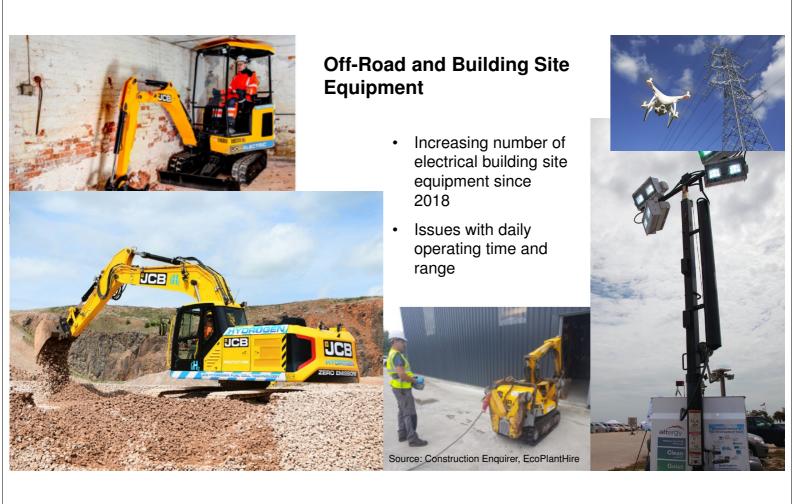
HyDEX Winter School 2024

Fuel Cells in Transport

Slide 21/28

## **FC Electric Flight**

**Motivation** 


- noise
- pollutant emissions from airports.
- extending airport operations into the night
- more efficiency from electric motors
- less GHG emissons from transport





Zero Avia

First flight from Cranfield, UK, Sept 2020



#### Hydrogen road and non-road applications

source: ALF, Chemnitz Univ., Thomas v. Unwerth



#### UNIVERSITY<sup>OF</sup> BIRMINGHAM

#### Mobile Applications: Road, Off-road, Logistics, Aviation, Rail, Maritime







Fuel cell vehicles (Source: CaFCP) Fuel cell HDV in Switzerland (Source: Hyundai) Fuel cell garbage truck (Source: Baden-Würternmberg.de) HyDEX Winter School 2024







Fuel cell bus from Toyota (Source: Toyota) Fuel cell fork lift (Source: Still) Fuel cell excavator (Source: JCB)







Coradia iLint (Source: Alstom) Zero-e (Source: Airbus) Yacht hydrogen powered (Source: Toyota)



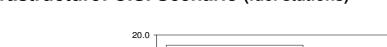


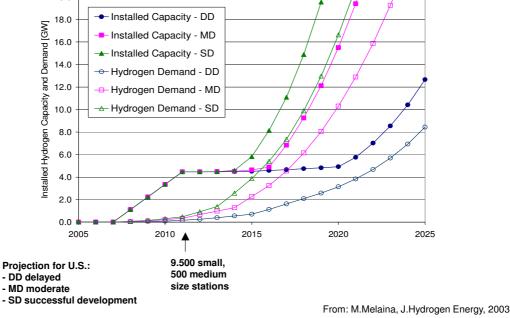


Loco with 5x200kW (Source. Nuvera) Antares H2-plane (Source: DLR) Ship, onboard power supply (Source: HDW) Slide 24/28

Fuel Cells in Transport



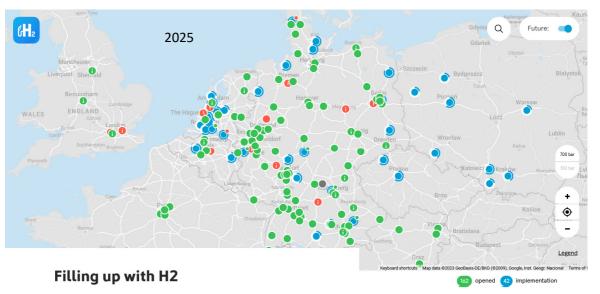

# UNIVERSITY<sup>OF</sup> BIRMINGHAM


## Aberdeen Bus Depot (HyVeloCity project)

- Linde technology (BOC)
- status 09/2019: ٠
- 3,000 fillings •
- 99.9 % availability
- 55 MPa tube storage, cascading
- 2 x 35 MPa dispensing
- Linde IC90 compressor ٠
- local hydrogen production via electrolysis ٠



| HyDEX Winter School 2024                      | Fuel Cells in Transport | source: Linde | Slide 25/28              |
|-----------------------------------------------|-------------------------|---------------|--------------------------|
|                                               |                         |               |                          |
|                                               |                         |               |                          |
|                                               |                         |               |                          |
|                                               |                         | <b>FR</b> T   | JNIVERSITY <sup>of</sup> |
| Infrastructure: U.S. Scenario (fuel stations) |                         |               |                          |
|                                               |                         |               |                          |



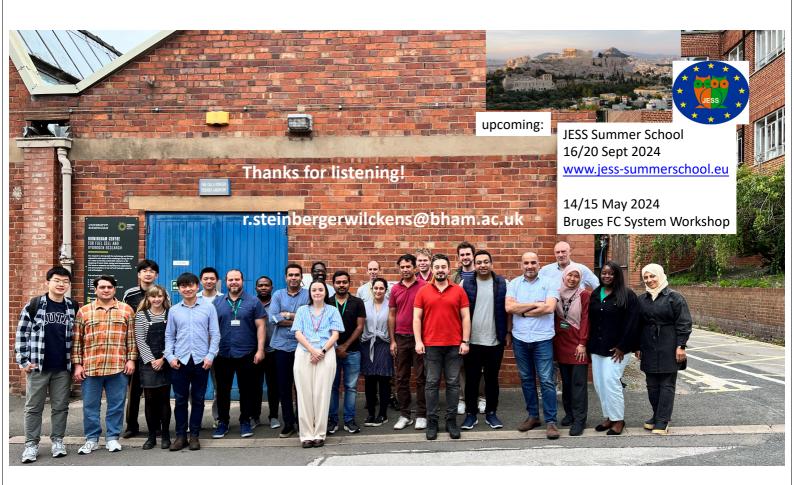



Fuel Cells in Transport



# **European Hydrogen Infrastructure**




• hydrogen refuelling infrastructure is cheaper than public electrical charging and has less impact on the electricity grid operation

HyDEX Winter School 2024

Fuel Cells in Transport

Source: h2.live

Slide 27/28

