

Local Green Hydrogen

ABOUT US

HyWaves is a solar-to-hydrogen technology company based at Cranfield University with a radical approach to the power electronics connection between the solar PV and the electrolyser, driving down the Levelised Cost of Hydrogen.

HyWaves brings unique know-how and expertise to create a competitive advantage in the unexploited market gap.

We envision a world where green H₂ is produced locally One step closer to decarbonising the world

THE CHALLENGE

Production costs of Green Hydrogen must be driven down

- Globally, a typical solar plant is designed for electricity grid export
- Its architecture is not optimised for Green H₂ production, resulting in low efficiency & high-cost

The cost of electrolysers is forecasted to fall dramatically therefore the highest cost of electrolysis will be electricity. Electricity losses must be minimised.

Green hydrogen: Methods of production and its role in the energy mix

Hydrogen will become a key commodity that is used both as a fuel and a feedstock for industrial processes

- Semiconductor manufacturing is moving to a new process (EUV) being introduced that will require up to 1,000 times more hydrogen than at present with the industry having a need for a supply of high-purity green hydrogen
- The Industry in Taiwan currently consumes an estimated 165K metric tonnes per year of hydrogen!
- Joint Cranfield/HyWaves project over the next 24 months developing a production facility to meet the need for onsite production and management

Green hydrogen: Methods of production and its role in the energy mix

Hydrogen is going to be a key energy storage method as carbon-based fuel is phased out

- Electrochemical storage (Batteries) are not suited for long-term storage or for were there is a need to transport energy
- Hydrogen can be converted to liquid form or ammonia that can be easily transported using the fully developed global oil and gas network
- Along with supporting the energy transition hydrogen is used in a range of key industries

Source: IEA Energy Technology Roadmap Hydrogen and Fuel Cells, JRC Scientific and Policy Report 2013

GREEN HYDROGEN LANDSCAPE

- Soon, Green H₂ will be primarily produced where the Levelised Cost of Electricity (LCOE) is cheapest
- This will be in sunny climates where solar PV is cheap and abundant, e.g. the Middle East, North Africa, Australia
- HyWaves enhanced electrolyser will reduce the CAPEX balance of systems and almost eliminate electricity losses for solar to hydrogen plants, in these climates

Clean hydrogen supply by technology. 2030 to 2050

Source: Deloitte's 2023 global green hydrogen outlook

Green hydrogen: Methods of production and its role in the energy mix

Solar energy offers a key contributor to meeting global energy demand

- Just 0.3% of the Earth's surface could generate the full energy demand of the World if covered in solar PV
- Averaged over a year, approximately 342 watts of solar energy fall upon every square meter of Earth (8kWh/day)
- Intermittency and issues with grid connections result in hydrogen becoming a key energy carrier for solar ΡV

15,000 gigawatts Solar Area Required 1,270 x 1,270 km area 136 gigawatts

Solar Area Filled 120 x 120 km area

16% of the area of the Sahara could provide enough solar power for the world.

IFF Website Post

Using the Solar Industry to produce green hydrogen

- Solar PV has seen a dramatic cost reduction over time as production is scaled with the wholesale panel cost now less than \$0.5/W for a Monocrystalline cell, making it the lowest cost renewable source
- There is, however a problem typical sites are not optimised for hydrogen production and come with a high cost of grid connection!

GREEN ENERGY HOW HYDROGEN IS NEEDED IN THE PICTURE

Bring more green power online will require hydrogen

- Adding renewables results in system intermittency requiring energy storage not currently seen in the grid
- Hydrogen grid stabilization is likely to be required for greater solar capacity – 10+ year wait for grid connection is typical for new solar farms!

UK Solar capacity for expansion is limited by grid connection availability

A typical solar plant in the UK or anywhere around the world is designed for electricity grid export – Up to 14-year waiting list in the UK!

Its architecture is not optimised for Green Hydrogen production, resulting in low efficiency and high-cost

HyWaves has a solution to this challenge!

Current solar to hydrogen plants are sending renewable electricity to the grid even when co-located with the electrolyser resulting in >10% losses

Solution: DC-based Co-located PV & Electrolyser

✓ Direct DC-DC coupling \rightarrow Up to 99.5% of PV energy to produce green hydrogen

- 10% more electricity available for hydrogen production
- CAPEX savings in PV inverter & electrolyser power supply electronics

H₂ from PV: H₂Top Capex Savings and Efficiency Gains

H₂Top can **reduce the LCOH up to 25%** for green hydrogen produced from **PV** renewable energy:

- a) 10% by improved energy efficiency of the DC-DC direct-coupling electronics, no power conversion
- b) 15% by CAPEX saving on Power Supply of the electrolyser system, replaced by cheaper H2Top switching electronics
- c) 10% to 20% by CAPEX savings in PV Plant, by removal of 1) MPPT Inverters 2) Grid Connection 3) Other costs associated with Inverters and Grid Connection

Note: The exact CAPEX saving impact of b) c) depend from country & relative weight of PV & Electrolyser costs.

Stage of Development

Phase 1

Validation of concept at 1kW scale Phase 2

Software development for automated switching Phase 3

Co-develop enhanced electrolyser with automation (by Q4 23)

Phase 4	Phase 5
Pilot solar to hydrogen plant. (by Q2 24)	Compatibility of wind energy source (by Q4 24)

1

Cranfield Students Working on a HyWaves Project!

- Over the next 24 months we will be developing a solar-to-hydrogen plant with Cranfield with a focus on delivering a research facility that other companies/universities can become involved
- The facility will have an experimental 50kW BP Lightsource solar array providing a highly capable research flexibility on a modular scale by mid-2024!

Making Waves in the Hydrogen World