Overview of Cranfield University's Hydrogen Research

Cranfield University

Professor Upul Wijayantha Head, Centre for Renewable and Low Carbon Energy

www.cranfield.ac.uk

10th January 2024

Gaseous H₂, liq.H₂ and SFs research across Cranfield aligned to the UK Government's 10-point plan (TRL 1-6)

1 MW low carbon H₂ production pilot plant

700 kg-H₂/day **95%** H₂ Purity

Hyper

BREAKTHROUGH TECHNOLOGY

Sorption Enhanced Reforming (SER)

 $CH_4 + 2H_2O + Heat(a) \rightarrow 4H_2 + CO_2$ $CaO + CO_2 \rightarrow CaCO_3 + Heat(b)$ $CH_4 + 2H_2O + CaO \rightarrow 4H_2 + CaCO_3$ $Heat(b) \sim 95\%$ Heat(a)

> Sorbent elutriates through reactor to filter while heavier catalyst remains

CO₂ absorbed by sorbent forcing more CO_2 to form (Water-Gas Shift)

> Steam Methane Reforming produces H_2 , CO & CO₂

Bulk Hydrogen Production by 'Sorbent Enhanced' Steam Reforming

Department for Business, Energy & Industrial Strategy

Phase 1 – Feasibility

Phase 2 – Demonstration

Phase 3 – Extended Testing

May – September 2019

January 2020 – May 2024

June 2024 – July 2024

GTI ENERGY solutions that transform Current Consortium

Cranfield University

Doosan Babcock

Gas Technology Institute

Project Lead and Technology Development

Engineering Partner

Technology Owner and Techno-economics

Compared to SMR+CCS or ATR+CCS, SE-SMR technology can achieve:

- ~25% lower Levelised Cost of Hydrogen
- >50% reduction in CAPEX with similar OPEX
- ~97% CO₂ capture rates with equivalent H₂ purity
- <40% lower carbon footprint
- Smaller physical footprint due to integrated nature of the SE-SMR process

Novel catalysts for .HyPER

Development of novel bi/tri-metallic catalysts for (sorptionenhanced) steam methane reforming

- Screening alloys based on SMR activity, and C and O adsorption energies
- Microkinetic modelling and DFT-calculated adsorption used to aid screening
- Synthesisation of the most promising materials followed by characterisation and testing in bench scale reactor
- Currently looking at sulphation resistant catalysts

Ni-Metalloid and Ni-alloy based catalysts

- When fossil based CH₄ is used, H₂ production is *carbon neutral*
- When bio-CH₄ is used, H₂ production is *carbon negative*. (footprint less than that of renewable electrolysis).

Turquoise H₂ Pilot (HODEX)

Reducing the cost of Turquoise H₂: Potential Routes

Every kg of hydrogen produced gives 3kg of carbon

Add Value to Carbon by-product

© Cranfield University January 24

Adding value to the Carbon in Turquoise H₂ : How?

- Cost of lower grade carbon ranges from **\$0.4 1/kg**
- Cost of special grade carbon can go up to \$2/kg

Carbon Steel Supercapacitors Batteries Tyres Air/water purifications Road infrastructures Wind Turbines Mobile Phones Soil Nutrients (biochar) Cosmetics Phase change materials

Cranfiel Universit

• US DoE target for cost of hydrogen at \$1/kg by 2030

Adding value to the Carbon in Turquoise H₂ : How?

- Cost of lower grade carbon ranges from **\$0.4 1/kg**
- Cost of special grade carbon can go up to \$2/kg

Carbon Steel Supercapacitors Batteries Tyres Air/water purifications Road infrastructures Wind Turbines Mobile Phones Soil Nutrients (biochar) Cosmetics Phase change materials Magnetic properties

Cranfiel Universit

US DoE target for cost of hydrogen at \$1/kg by 2030

Adding value to the Carbon in Turquoise H₂ : How?

Application 1: Supercapacitors

Supercapacitors made using the by-product carbon outperformed the industrial grade carbon in high power for high mass loadings

Application 2: Magnetic properties (in data storage)

Application 3: Soil Nutrients

Application 4: Phase Change Materials

Cranfield University

Biogas Production

Anaerobic digestion of sewage sludge, municipal solid waste and energy crops

Thermal and biological pre-treatments to boost anaerobic digestion performance

Green Hydrogen Production

We work very closely with HyWaves which is an R&D company that develops green hydrogen technologies for high-efficiency and low-cost renewable-to-H₂ production.

HyWaves has patented solar-to-H₂ power management and control system architecture (H2Top) that has already been successfully demonstrated at Cranfield at a small prototype level.

The H2Top system harnesses the advantages of a direct-current connection between any DC renewable power source (e.g. PV, batteries) to be directly used to power H₂ electrolysers without a requirement for any power conversion stages.

The H2Top would significantly reduce the CAPEX of current Green H_2 system and lower the cost to be competitive to blue and grey H_2 .

SOFC-integrated calciner for DAC

BEN Project (£2.9m) – Design and demonstration of SOFC-integrated calciner

Cranfield kW-scale Solid Oxide facility

Cranfield University

Ammonia as a sustainable fuel

NH3-T NH3-NOX

Δ

0

DME-T DME-NOX

V

0 CH4-NOX

Thermal NO

Fuel NO

Ammonia combustion

Cranfield University

Materials Degradation and Lifing for Energy Engineering

LH₂ – Fuelled Aircraft: CU Thought-leadership Example

Innovation Waves to Accelerate Decarbonisation

Innovation Wave 1 10-15 Years Focus: Certification

Innovation Wave 2a 20+ Years Focus: Efficiency

ENABLE H2

~

Innovation Wave 2b

20+ Years

Focus: FC Certification

Innovation Wave 3 30+ Years Focus: Turbo-cryo-electric

UK-ARC H₂ Group Scope:

Thematic Areas and Mapping of Expertise and Ambitions

H ₂ In the Aircraft
H ₂ aircraft design and performance analysis
H_2 propulsion system design, integration, and performance analysis (gas turbines (including advanced cycles – intercooling, recuperation, pressure rise combustion etc.), fuel cells, hybrid and turboelectric + distributed propulsion).
LH ₂ tank design, manufacturing, and aircraft integration
LH ₂ tank fluid movement modelling (sloshing), sensors and gauging
LH ₂ fuel system thermal management and control (fuel supply system from tanks to "consumer" (either fuel cell or gas turbine))
Solid state storage
Aircraft engine and combustion noise
Low NOx H ₂ Combustion
Contrails modelling and aircraft trajectory optimisation for contrail avoidance (incl. trade-offs with mission fuel burn).
Hybrid/Dual/Blended-fuels
Technoeconomic Environmental Risk Assessments (TERA) (Mission level and over the life cycle) & Pathways towards decarbonising aviation
Materials and Manufacturing
Certification

II the floor Atmosphere ff

University of BRISTOL

Imperial College

London

QUEEN'S

UNIVERSITY

University of Nottingham

1 CHINA 1 MALAYOU

UNIVERSITY OF CAMBRIDGE

Thank you

upul.Wijayantha@cranfield.ac.uk

© Cranfield University January 24