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Gaseous H,, liq.H, and SFs research across Cranfield aligned to
the UK Government’s 10-point plan (TRL 1-6)

- The Ten Point Plan for a

Related research facilities Bulk Hydrogen Production by Sorbent b ) Green Industrial Revolution

S Aenwiiain &y a2 skchige i, Enhanced Steam Reforming (HyPER)
- Ammeonia for marine propulsion. '
« Econamics and certification of H2 and SF. i ol ‘ Point 1

Advancing Offshore Wind
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Point 2
Driving the Growth of Low Carbon Hydrogen

Point 3

% Delivering New and Advanced Nuclear Power

propulsion systems

Emigsions and contraile of H2 and SF.
- Point 4

Accelerating the Shift to Zero Emission Vehicles

Point 5
Green Public Transport, Cycling and Walking

Point 6
- Jet Zero and Green Ships
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Investing in Carbon Capture, Usage and Storage
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=3 HyPER - Low carbon H, production
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1 MW low carbon H, production pilot plant
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Operating range = 4-16 bar
At 4 bar, capacity = 0.3 MWth H, = 200 kg/day (LHV H,)
At 16 bar, capacity = 1 MWth H, = 700 kg/day (LHV H,)
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Flue Gas

>98% Purity

O H v P E R CO, Product Gas Stream

Solids Separation System e

H, Product (Dry-Basis)
H, > 94%, CH, ~2.5%
(:CD,(:C)Z,Pq2'~396

Sorption Enhanced Reforming (SER)

Fluidized Bed
CH, + 2H,0 + Heat(a) —> 4H, + CO, Reactor

.ﬁ

CaO + CO, —> CaCO, + Heat(b)

CH, + 2H,0 + CaO —> 4H, + CaCO;
Heat(b) ~ 95% Heat(a)

® Catalyst
¢ Sorbent
* Sorbent with CO,

..........0

Sorbent elutriates through reactor to a
filter while heavier catalyst remains

CO, absorbed by sorbent forcing
more CO, to form (Water-Gas Shift) e

Steam Methane Reforming 9
produces H,, CO & CO,

_/

G Transport Gas 5= = 5 Air & Recycled
] H, to Burner

) 0 Steam/NG/Recycle Gas inlet
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-HYPER

Bulk Hydrogen Production by ‘Sorbent Enhanced’ Steam Reforming
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Department for Phase 1 — Feasibility May - September 2019

Business, Energy

& Industrial Strategy Phase 2 — Demonstration January 2020 — May 2024
Phase 3 — Extended Testing June 2024 - July 2024

LCRI

/ LOW-CARBON

RESOURCES INITIATIVE

Current Consortium

CX) Cranfield University Project Lead and Technology Development
GT'ENERGY Doosan Babcock Engineering Partner
Gas Technology Institute Technology Owner and Techno-economics

DOOSAN
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Compared to SMR+CCS or ATR+CCS, SE-SMR technology can achieve:
 ~25% lower Levelised Cost of Hydrogen
* >50% reduction in CAPEX with similar OPEX
* ~97% CO, capture rates with equivalent H, purity
* <40% lower carbon footprint

* Smaller physical footprint due to integrated nature of the SE-SMR process
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Novel catalysts for ..HVPER

Development of novel bi/tri-metallic catalysts for (sorption- [, . . . . —gd=
enhanced) steam methane reforming = e 1
* Screening alloys based on SMR activity, and ==y
C and O adsorption energies
* Microkinetic modelling and DFT-calculated adsorption used to \
aid screening . Bin
* Synthesisation of the most promising materials followed by F

characterisation and testing in bench scale reactor
 Currently looking at sulphation resistant catalysts

O ads energy (eV)
Log(TOF) (s)

C ads energy (eV)

Ni-Metalloid and Ni-alloy based catalysts
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https://hydex.ac.uk/hydrogen-facilities
https://hydex.ac.uk/about-hydex/hydex-partners/

Turquoise H, Pilot (FyDEX )

CH, — C + 2H, (on Felcarbon based catalysts)

) — Gas Product Outlet
Fuel Fill Inlet H‘qy
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Reactor

_-Electric Heater
Thermal chamber (850 °C)
At 1 bar, = 14 kg/day (LHV H,)

Operational in spring 2024

Drain Outlet

Natural Gas / Methane Inlet

* When fossil based CH, is used, H, production is carbon neutral
* When bio-CH, is used, H, production is carbon negative. (footprint less than that of renewable electrolysis).
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Turquoise H, Pilot (FHyDEX)

Solid Carbon
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Reducing the cost of Turquoise H,: Potential Routes
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11 - 15 kWh/kg H, Electrolysis: ~ 55 kWh/kg H,
Equation: CH, — C ¥ 2R,
Moles: 1 1 2
Molar Mass: 16 12 4

Every kg of hydrogen produced gives 3kg of carbon

& Use waste heat

+ Add Value to Carbon by-product

ww © Cranfield University January 24



Adding value to the Carbon in Turquoise H, : How?

* Cost of lower grade carbon :
ranges from $0.4 - 1/kg :

* Cost of special grade carbon  « >
can go up to $2/kg

Cranfield
‘ University
Carbon Steel

Supercapacitors
Batteries

Tyres

Air/water purifications
Road infrastructures
Wind Turbines

Mobile Phones

Soil Nutrients (biochar)
Carbon Price (5/ke) Cosmetics

Phase change materials

Hydrogen Cost (S/kg)

+ US DoE target for cost of hydrogen at $1/kg by 2030

ww © Cranfield University January 24



Adding value to the Carbon in Turquoise H, : How?

* Cost of lower grade carbon :
ranges from $0.4 - 1/kg :

* Cost of special grade carbon  « >
can go up to $2/kg

Cranfield
‘ University
Carbon Steel

Supercapacitors
Batteries

Tyres

Air/water purifications
Road infrastructures
Wind Turbines

Mobile Phones

Soil Nutrients (biochar)
Carbon Price (5/ke) Cosmetics

Phase change materials
Magnetic properties

w

N

A

Hydrogen Cost ($/kg)

=

+ US DoE target for cost of hydrogen at $1/kg by 2030
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Adding value to the Carbon in Turquoise H, : How?

Application 1: Supercapacitors

Supercapacitors made using the by-product carbon
outperformed the industrial grade carbon in high
power for high mass loadings

Energy density (Wh/kg)

60 T

50 +

40 +

30 +

20 +

10 +

0

Application 2: Magnetic properties (in data storage)

Application 3: Soil Nutrients

Application 4: Phase Change Materials

FyDEX

30 mg/cm2

e Before Methane
Cracking

® After methane cracking

Power density (kW/kg)

Cranfield
University
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Biogas Production

Anaerobic digestion of sewage sludge, municipal solid waste and energy crops

Thermal and biological pre-treatments to boost anaerobic digestion performance




Green Hydrogen Production

We work very closely with HyWaves which is an R&D company that develops green hydrogen technologies
for high-efficiency and low-cost renewable-to-H, production.

HyWaves has patented solar-to-H, power management and control system architecture (H2Top) that has
already been successfully demonstrated at Cranfield at a small prototype level.

The H2Top system harnesses the advantages of a direct-current connection between any DC renewable
power source (e.g. PV, batteries) to be directly used to power H, electrolysers without a requirement for any
power conversion stages.

The H2Top would significantly reduce the CAPEX of current Green H, system and lower the cost to be
competitive to blue and grey H,.



SOFC-integrated calciner for DAC
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BEN Project (E2.9m) — Design and demonstration of SOFC-integrated calciner

Cranfield kW-scale Solid Oxide facility
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Ammonia as a sustainable fuel
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Direct ammonia-fed SOFC Ammonia combustion
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Materials Degradation and Lifing for Energy Engineering

flow
C;T' Safety = = Safety
T gas in gas out Vent
Gas
mix. 1
Mass flow —+4 v/
Materials Degradation inc. ( -2 o1 R
Post H,-Combustion s G T i, e
Biofuel Options = : samples (212 I
Ana IySIS in crucibles EE Stainless steel
MOdelllng and ?_Izoat - U con:lzisr;g}ent
Materials ‘Digital Twins’
Degradation and Setting test Laboratory
Lifin : : arameters testin
g Interacictlons with| P riER g
stress
Repair and Recycling
Materials in Extreme Lifetime Pilot-scale
Environments inc. : modelling tests
Supercritical-CO, _ Plastic
Lifecycles and
Fuels . o o o o
Seawater ..
Electrolysis e 0
Pyrolysis Qil Processing via Electro- [ depostion fx=s /el
Chemistry for Recycling \\B\

Contact: j.sumner@cranfield.ac.uk



LH, - Fuelled Aircraft: CU Thought-leadership Example
Innovation Waves to Accelerate Decarbonisation

Cranfield
University

Innovation Wave 1 Innovation Wave 2a Innovation Wave 2b
10-15 Years 20+ Years 20+ Years
Focus: Certification Focus: Efficiency Focus: FC Certification

Innovation Wave 3
30+ Years
Focus: Turbo-cryo-electric

== | . ‘.’?,:—

https://www.airbus.com/en/innovation/zero-emission/hydrogen/zeroe

https://www.ati.org.uk/flyzero/



https://www.airbus.com/en/innovation/zero-emission/hydrogen/zeroe
https://www.ati.org.uk/flyzero/

Crant UK-ARC H, Group Scope: D L
Thematic Areas and Mapping of Expertise and Ambitions G

H, in the Aircraft

H, aircraft design and performance analysis
H. propulsion system design, integration, and performance analysis (gas turbines (including advanced cycles —

UK AEROSPACE

(I:QOESSO%A@A intercooling, recuperation, pressure rise combustion etc.), fuel cells, hybrid and turboelectric + distributed
propulsion).

LH, tank design, manufacturing, and aircraft integration

LH, tank fluid movement modelling (sloshing), sensors and gauging

LH> fuel system thermal management and control (fuel supply system from tanks to “consumer” (either fuel cell
Stream 1: or gas turbine))

H, in the Solid state storage

Ai ft Aircraft engine and combustion noise

Ircrd Low NOx H, Combustion

Contrails modelling and aircraft trajectory optimisation for contrail avoidance (incl. trade-offs with mission fuel
burn).

Hybrid/Dual/Blended-fuels

Technoeconomic Environmental Risk Assessments (TERA) (Mission level and over the life cycle) & Pathways
towards decarbonising aviation

Materials and Manufacturing

Certification
= &
= A The 4 MANCHESTER
4 &y University i, gl 824
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UNIVERSITY Prifysgol Abertawe Sheffield. Glasgow
: ; = 1 UNIVERSITY OF
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Thank you

upul.Wijayantha@cranfield.ac.uk
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