HYDROGEN COMBUSTION ENGINES (H₂ICE) IS IT NOW OR NEVER?

RICHARD PENN JANUARY 2024

WELCOME & INTRODUCTION

Penn Engineered Solutions Ltd is an independent engineering and training consultancy providing transport propulsion and electrification engineering excellence for clients in a broad range of industry sectors both private and public sector. With more than thirty years' experience in transport propulsion systems we work with our clients to understand their skills and training requirements, map their knowledge gaps, and deliver solutions for upskilling and embedding competencies within the workforce. Our approach is to offer a mixture of on and off-site support and ensure we deliver to the client the knowledge and tools allowing them to continue their upskilling journey.

© 2024 Penn Engineered Solutions Limited. All Rights Reserved.

For more information, please contact info@pennengineeredsolutions.co.uk

This publication has been written in general terms and therefore cannot be relied upon to cover specific situations. The information is intended to be as reliable as possible at the time of publication and is of a professional nature.

The application of the principles described will depend upon the explicit circumstances involved and we recommend that you obtain professional advice before acting or refraining from acting on any of the contents of this publication. Penn Engineered Solutions Ltd would be pleased to advise readers on how to apply the principles set out in this publication to their specific situations. Penn Engineered Solutions Ltd accepts no duty of care or liability for any loss or damage occasioned to any person acting or refraining from action because of any material in this publication.

TOPICS TO COVER

Hydrogen ICE fundamentals

Design and development

Case study : JCB

Summary

Q&A

Hydrogen ICE, the dawn of a new era or just old news??

The de Rivaz engine was a pioneering reciprocating engine designed and developed from 1804 by the Franco-Swiss inventor Isaac de Rivaz. The engine has a claim to be the world's first internal combustion engine and contained some features of modern engines including spark ignition and the **use of hydrogen gas as a fuel.**

Ford Begins Production of V-10 Hydrogen-Fueled Engines

17 July 2006

Ford has kicked off production of its dedicated hydrogenfueled 6.8-liter V-10 engines, making it the first automaker in the world to do so. The engine is based on the same modular engine series that powers many Ford products, but is specially prepared to burn hydrogen as a fuel.

The Ford Hydrogen V-10.

Motivation for Alternative Powertrains

Preservation of the climate and environment for us and our descendants Avoiding global warming gases

No combustion of fossil fuels

The optimal CO₂-free powertrain of each vehicle, with a clear view to all alternatives

ICE Technology towards decarbonization

I		0	
Parameters	Battery Electric Vehicles	Fuel Cell Electric Vehicles	H2 Engine Vehicles
Production + infrastructure + operating costs	↓		
Suitability for daily use			
Driving Ranges			
Refueling time			
Fuel efficiency			
Durability			
Climate Protection			

Parameters Production + infrastructure + operating costs Suitability for daily use **Driving Ranges Refueling time Fuel efficiency** Durability **Climate Protection**

What are your thoughts on these parameters??

- Production source questionable, (public) infrastructure patchy, Hydrogen costs currently high
- > Assuming infrastructure and Hydrogen costs are acceptable....
- ➤ Good with suitable size tanks and compressed to 350 / 700 bar
- Reasonable compared to petrol / diesel, typically.....
- Highly dependent upon combustion technology, can be comparable to diesel (or better...)
- Assuming base engine adaption then as good as diesel.....
- \succ CO₂ yes, NO_x control with aftertreatment....

Hydrogen ICE as solution for CO₂ neutral^{*} trucks

Hydrogen fuel is considered as CO₂ neutral & has the potential for "zero-emission-vehicle^{**}"

- €
- Hydrogen ICE for Heavy Duty vehicles come with similar costs as diesel/natural gas engines

Capability to ensure **high system efficiencies** for Heavy Duty operation cycles (full load operation)

Short time to market

High tolerance to low purity Hydrogen and therefore gas engine like reliability

- Potential to prolong the lifecycle of conventional powertrain vehicles & protect investments in existing infrastructure
 - ^{***} Qualification as Z(CO₂)EV: CO₂ below 1g/kWh CO₂ Sources: Lube Oil, AdBlue

The interest in H2-ICE originated from HD segment in Europe has spread out to various applications and regions around the world.

Application			*)	۲
Passenger car & LCV		\bigcirc		\bigcirc
Medium- & heavy-duty CV (UD)				
Medium- & heavy-duty CV (RD, LH)				
Construction				\bigcirc
Agriculture		\bigcirc		\bigcirc
+ - Power generators			\bigcirc	\bigcirc
Rail	\bigcirc		\bigcirc	\bigcirc
Marine			\bigcirc	\bigcirc

MAIN DRIVERS

- MD/HD market in Europe forcing the development of hardware (esp. Direct Injection system)
- Hardware can be used in other classes as well and makes business case attractive
- Certain applications see major drawbacks for fuel cell
 - OFFROAD
 - AGRICULTURE
- For larger bore size, dedicated injectors might be developed at a later timing but PFI solutions available soon

Publicly announced interest and investment in H₂-Engine development is now growing strongly amongst on-and off-highway industry players

Hydrogen	Methane	Gasoline	Diesel
0.02	0.29	0.24	0.24
34.4	17.2	14.7	14.5
0.64	2.1	~2	-
1.85	0.38	0.37-0.43	0.37-0.43
$8.5 imes10^{-6}$	$1.9 imes10^{-6}$	-	-
4–76	5.3–15	1-7.6	0.6-5.5
2480	2214	2580	~2300
130+	120+	86-94	-
-	-	13–17	40-55
	Hydrogen 0.02 34.4 0.64 1.85 8.5×10^{-6} $4-76$ 2480 $130+$ -	HydrogenMethane 0.02 0.29 34.4 17.2 0.64 2.1 1.85 0.38 8.5×10^{-6} 1.9×10^{-6} $4-76$ $5.3-15$ 2480 2214 $130+$ $120+$ $ -$	HydrogenMethaneGasoline 0.02 0.29 0.24 34.4 17.2 14.7 0.64 2.1 ~ 2 1.85 0.38 $0.37-0.43$ 8.5×10^{-6} 1.9×10^{-6} - $4-76$ $5.3-15$ $1-7.6$ 2480 2214 2580 $130+$ $120+$ $86-94$ $13-17$

Hydrogen	
0.02	
34.4	
0.64	K
1.85	
$8.5 imes10^{-6}$	1
4–76	
2480	
130+	
-	
	Hydrogen 0.02 34.4 0.64 1.85 8.5×10^{-6} $4-76$ 2480 $130+$ -

- Typically lean mixtures utilised, full load performance
 - approaching stoichiometry
- Short quenching distance allows combustion close to cylinder walls
- Ultra fast combustion with rapid mixing
- Low ignition energy preignition concerns
- Extremely broad range of flammability – pre-ignition concerns
- Flame temp @stoichiometry extremely high = NO_x production

For dump trucks, the cost of ownership for hydrogen and diesel internal combustion engines is expected to break even around 2030.

Estimated hydrogen cost

¹Estimate is for 600-ton open-pit dump truck, such as those used in mines. Assumed CO₂ price increase from \$28/ton in 2020 to \$50/ton by 20 \$200+/metric ton by 2050. ²Diesel internal combustion engine. ³Hydrogen internal combustion engine. ⁴Fuel-cell electric vehicle. Source: Expert interviews; McKinsey analysis

A quick reminder on some terminology.....

- Combustion an exothermic (heat is released) REDOX reaction between a fuel and an oxidant
- REDOX = Reduction and Oxidation occurring simultaneously
- As air is not pure Oxygen, the Hydrogen combustion equation is simplified to:

 $H_2 + N_2 + O_2 = H_2O + NO$

NO will further react in air to create NO₂

Note: in the presence of lubricating oil and air impurities other

reactions can occur at trace levels (CO, HC, PM, CO₂)

ECE/TRANS/WP.29/GRPE/2021/13 (unece.org)

CO, THC, NMHC and CH₄ do not need to be demonstrated for engines where all of the fuels used have a molar carbon to hydrogen ratio of 0 as defined in paragraph 8. of Annex 4."

Chemical Composition of Air			
Name	Symbol	% by volume	
Nitrogen	N2	78.084 %	
Oxygen	02	20.9476 %	
Argon	Ar	0.934 %	
Carbon Dioxide	CO2	0.0314 %	
Neon	Ne	0.001818 %	
Methane	CH4	0.0002 %	
Helium	He	0.000524 %	
Krypton	Kr	0.000114 %	
Hydrogen	H2	0.00005 %	
Xenon	Xe	0.0000087 %	

Mixture formation is key to efficiency and low raw emissions

Different injection pressure levels enable different combustion process layouts with specific benefits and challenges

H₂ INJECTION SYSTEMS FOR HD ENGINES, SINGLE STAGE TURBO CHARGING (13L CLASS)

	External mixture preparation	Space requirement cylinder nead		
	Low pressure PFI	Low pressure DI	Mid pressure DI	High pressure DI
Fuel Injection	Port fuel injection ~ 5-10 bar	Direct injection ~ 15-30 bar	Direct injection ~ 40-60 bar	Direct injection ~ 300 bar
Specific Power (HD) engine	< 25 kW/l	> 25 kW/l	> 25 kW/l	~ 30 kW/l
Peak BMEP (HD) engine	< 20 bar	> 20 bar	> 20 bar	> 25 bar
Combustion	Lean Spark ignited	Lean Spark ignited	Lean Lean Spark ignited	Lean Spark ignited Diffusive
Knock tendency	CNG engine	es with similar	0	≜ (SI) Not existing (Dif. ¹⁾)
Boost pressure demand			0	0
Transient load response	characteris	characteristics (injection		*
Main benefit	 Easy to integroup CLESS Hardware available 	• Power density	 Same as LP DI Smaller packaging compared to low pressure 	 Same as MP DI Diffusive combustion possible
	Low failure risk	Iransient response	 Potentially better mixture preparation 	possible
Main challenges	BoostingSafety (Backfire)	 Integration DI Injector Uniform mixture preparation 	 Integration DI Injector Range 	 Integration DI Injector High pressure generation For Diffusive combustion high NOx raw emissions

| 13

- Taking advantage of the wide range of flammability it's possible to run extremely lean at part load conditions:
 - Excellent thermal efficiency
 - ✤ Ultra low NO_x
 - Poor transient performance without significant enrichment and then NO_x.....
- \succ EGR used to help control NO_x formation at richer AFR's
- Sophisticated boosting, supercharging or eBoosters to improve transient performance whilst maintaining a sensible lean AFR – exhaust gas temp management can be interesting.....
- Technology content and cost starts to escalate when packaging HP DI, plus EGR, plus eBooster but equivalent or better than diesel performance is possible....

Integration position of electrical support defines the required installed power level, less needed enrichment creates lowest NOx raw emissions

PENN ENGINEERED SOLUTIONS LTD

- Lag in power could be provided by the electric motor in P2 or P3 hybrid topology but would require electrical power of around 80 kW
 - If AFR > 2.4 can be maintained, extremely low NOx emissions also during transient operation can be expected
- E-Turbo solution requires less electrical power (~10kW) since it's accelerates the boost pressure build up and air flow through the engines which emphasizes turbine power, self-reinforcing effect
 - Enables a cost-effective measure to create diesel-like drivability

Impacts of H₂ on Mechanical Development & Validation

Cylinder block, crank, and con rod largely carry over

Main H₂-failure parameters

- Combustion irregularities
- Management of water content
- Oil input into combustion
- Hydrogen slip into crankcase
- Hydrogen embrittlement

Consideration of oil specification, ability to adsorb water / viscosity stability

Dedicated cylinder head design, spark plug integration Dedicated injection system and pressure regulation Material specification / selection of valves, piston, injector, spark plug etc

Careful specification of piston ring pack and crank case ventilation

4 Key Areas of Development

HYDROGEN INJECTION

SPARK IGNITION

AIR COMPRESSION

STEAM MANAGEMENT

 Based off the existing 448 DieselMax engine (4.8 litre, 4 cylinder, turbocharged)

- 350 bar tank storage
- Production ready date ???
- Customer trials 2022 2025...

From: Department for Transport and The Rt Hon Jesse Norman MP Published 9 February 2023

- government approves the use of the world's first digger powered by a hydrogen combustion engine on UK roads
- JCB's hydrogen-powered backhoe loaders will soon be working on UK construction sites
- hydrogen-powered technology could help decarbonise the UK construction industry, creating hundreds of jobs

SUMMARY Q&A

SUMMARY

ET Online 🔹 Last Updated: Feb 10, 2023, 01:33 PM IST

Synopsis

According to Reliance, it is a "unique and affordable", indigenously developed technology solution that could redefine the future of green mobility.

Reliance unveils India's first Hydrogen Internal Combustion Engine tech for heavy-duty trucks

mobility.

Reliance Industries on Monday unveiled India's first Hydrogen Internal Combustion Engine technology solution for heavy duty trucks, a company release said.

According to Reliance, it is a "unique and affordable", indigenously developed technology solution that could redefine the future of green

<u>**RIL</u>** and its vehicle partner <u>**Ashok Leyland**</u>, along with a few other partners, together developed the technology under its Net carbon Zero vison. The first engines run with this tech was tested in early 2022.</u>

The race to make diesel engines run on hydrogen

() 20 January

Converting mining industry vehicles to hydrogen could mean big savings in CO2 emissions

SUMMARY

PARAMETER	HYDROGEN FUELLED ENGINE (H2ICE)	FUEL CELL (PEM TYPE)	WINNER
Efficiency	~44%+ expectation for DI H ₂ fuelled ICE	~60% peak electrical efficiency (at ~25% load) ~44% at full load	In theory – fuel cell in use – similar
Emissions in use	Engine– out NOx [low] Trace oil derived emissions	No tailpipe emissions	Fuel cell
Technology maturity	ICE well understood, modification to burning H ₂ in development	Existing FC system providers further optimisation to suit niche application needed.	Similar
Noise/vibration	Substantial NVH effort	Quiet	Fuel cell
Fuel purity requirement	Tolerant to fuel contaminants/ lower grade H ₂ standard not yet defined	ISO H₂ purity standard (ISO 14687 Grade D)	H₂ICE
Air quality requirement	Robust to small particles	Sensitive to air contamination	H₂ICE
Durability	Diesel ICEs durable for >10,000 hours H ₂ ICEs expected to be similar	Durability & reliability improved to >10.000 hours	Similar
Auxiliary heat output	High grade heat similar to current ICE	Thermal management of low-grade heat for PEMFC required.	H₂ICE

