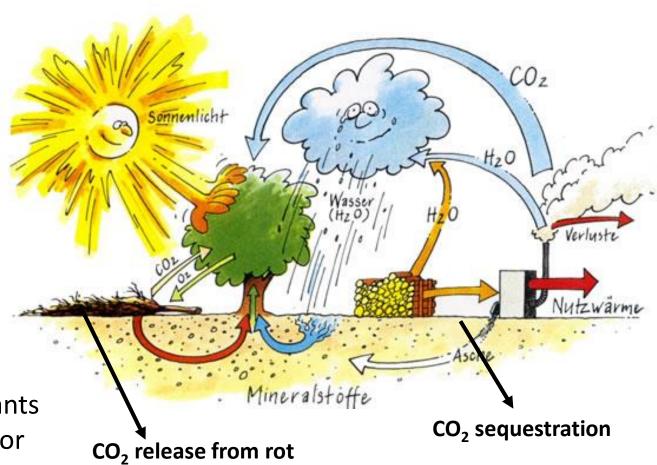
Hydrogen Winter School – University of Birmingham

Artur J Majewski

slides prepared by Miloud Ouadi

Hydrogen Production from Waste Biomass

1. Biomass Basics


Natural CO₂ Recycling

Biomass is:

a renewable energy source

produced from metabolic activities of plants and animals (biological material) and/or products of their decomposition or conversion

household and commercial wastes may also in some cases be considered as ,biomass'

Biomass Sources

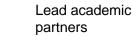
UK has abundance of raw materials for biomass fuels production

It come from a large number of different sources and wide variety of forms

- 1. Virgin wood
- 2. Energy crops
- 3. Agricultural residues
- 4. Food waste
- 5. Industrial waste and co-products

geograph.org.uk

Drax Power Station, UK


- supplies 6% of the UK's electricity needs
 - including 11% of UK's renewable power (14 TWh)
- four of six generators run on wood pellets,
- 20 train loads of wood pellets arrive at the Drax plant every day, most of them from the United States.

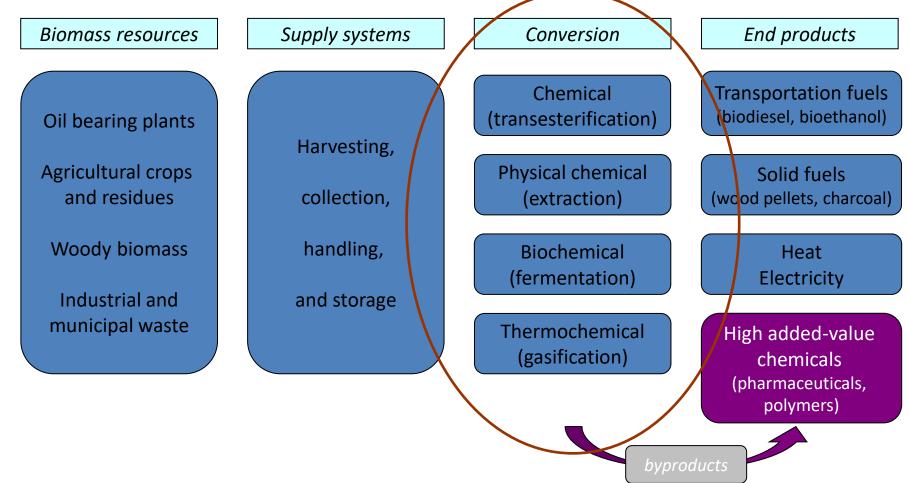
source http://biomassmagazine.com/ https://bioenergyinternational.com/

- The United Kingdom is the largest importer of wood pellets in the world (46%). In 2021, the UK imported over nine million metric tons of such products.
- the wood-burning Drax power station is the UK's largest source of CO₂ emissions at 12.1 million tonnes in 2022.

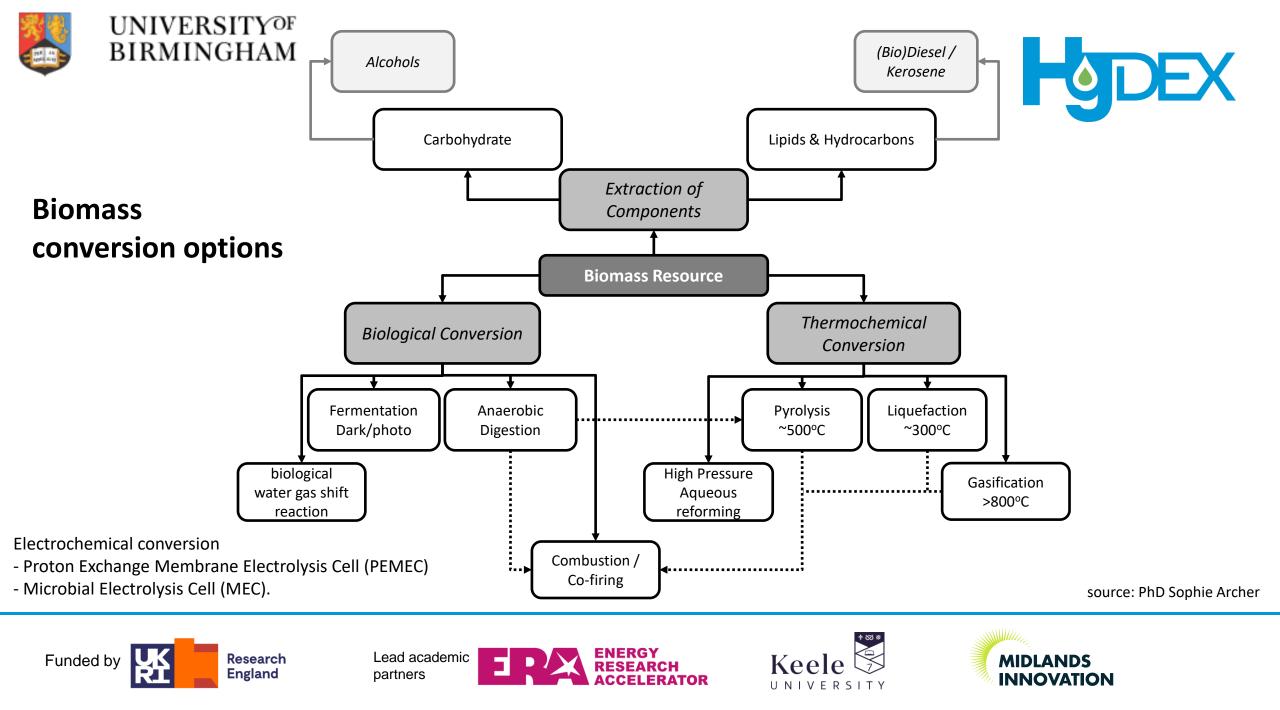
Funded by

Hydrogen Pathways	Advantages	Disadvantages	
Steam Methane Reforming / Pyrolysis $CH_4 + H_2O \rightarrow CO + 3H_2$	Commercial,widely usedlow cost	 H₂ sustainable only if biomethane is used GHG emissions from fossil CH₄ CH₄ better fuel in its own right Carbon must be captured at source 	
Electrolysis of Water $2H_2O + electricity \rightarrow 2H_2 + O_2$	 Commercial No GHG emissions providing green electricity is used 	High energy inputHigh capital cost	
Biomass Gasification / Pyrolysis Reforming $C_nH_y + H_2O \Rightarrow$ Syngas (CO + H ₂ + CO ₂ + C _n H _y)	• Utilises renewable biomass as	 Requires biomass drying H₂ requires separation from syngas requires gas purification steps High capital cost 	
Ammonia Cracking $NH_3 \rightarrow N_2 + H_2$	 Commercial Effective H₂ carrier in liquid form High purity H₂ produced Low energy consumption 	 Requires a green source of H₂ for NH₃ production NH₃ valuable as fertiliser (high price) Gas separation required NH₃ synthesis is energy intensive 	
Alkali Earth Metals/Water Reactions 2AI + $6H_2O \rightarrow 2AI(OH)_3 + 3H_2$	 Unexploited technology No energy required No emissions Low cost Utilises waste metals effectively 	 Oxide layer can inhibit reactions Residues require further recovery/utilisation Catalyst NaOH/KOH consumption 	

partners



Biomass conversion chain



2. Gasification

Gasification

Conversion of biomass into carbon- and hydrogen-rich fuel gases (carbon monoxide, hydrogen, methane)

Products of gasification :

✓ Hydrocarbon gases (also called syngas)

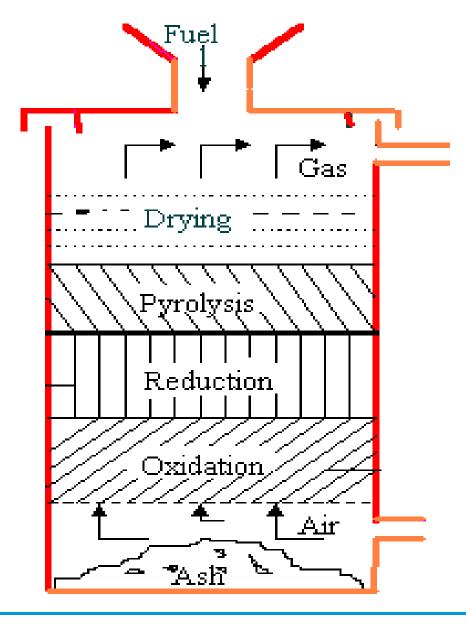
✓ Hydrocarbon liquids (oils)

Char (carbon black and ash)

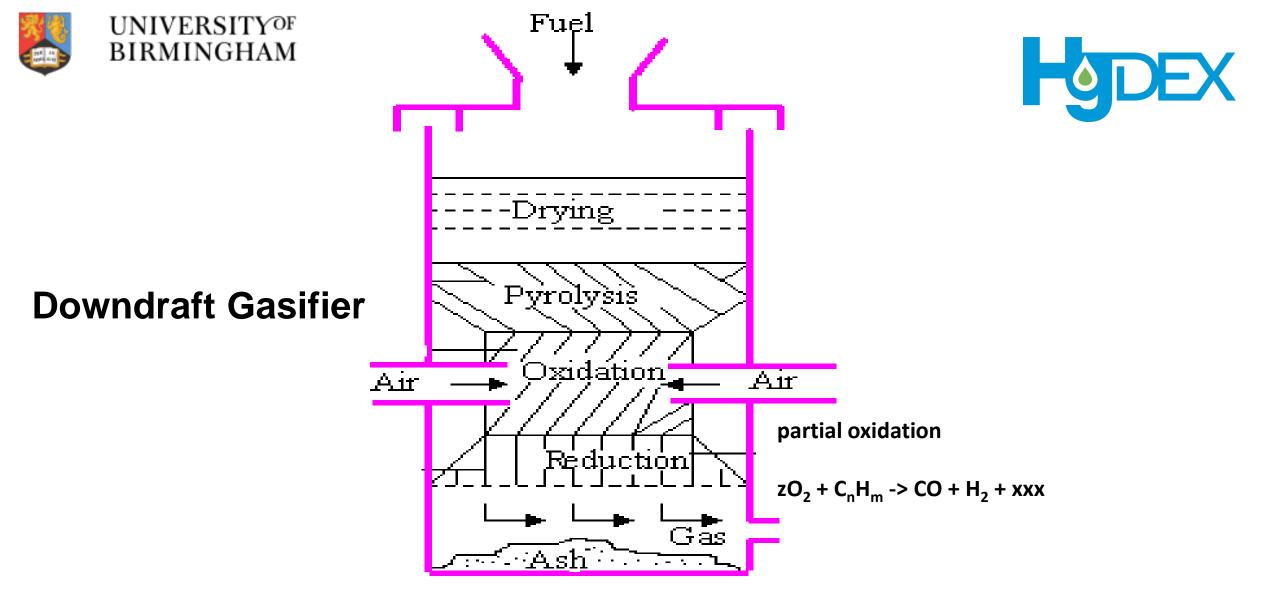
Biomass + Air $\rightarrow N_2 + CO + H_2 + CO_2 + CH_4 + H_2O + LHC + Tar + Char$ Biomass + Steam $\rightarrow H_2 + CO + CO_2 + CH_4 + HC + Tar + Char$ Syngas is primarily carbon monoxide and hydrogen (more than 85 percent by volume) and smaller quantities of carbon dioxide and methane

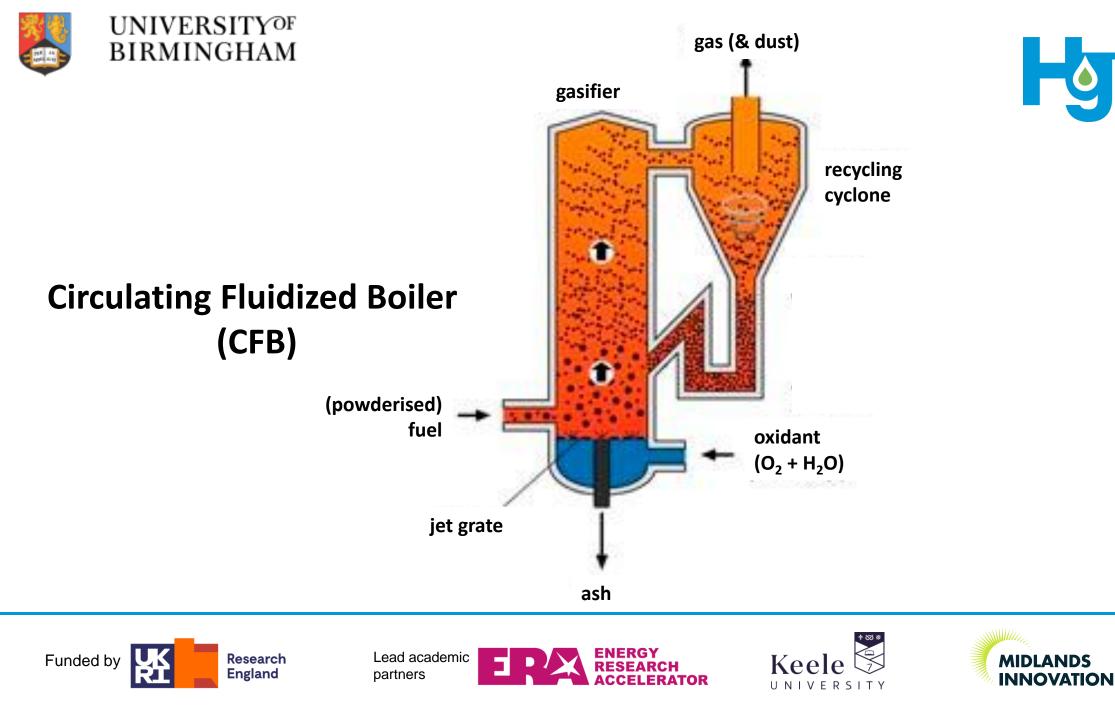
Types of Gasifiers

- Updraft Gasifier
- Downdraft Gasifier
- Twin-fire (two-stage) Gasifier
- Circulating Bed Gasifiers



Updraft Gasifier





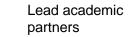
			B O O O O O O O O O O O O O O O O O O O	B Coldant	P 1 coxidant
	Fixed beds		Fluid beds		Entrained beds
	Co-current	Counter current	dense	circulating	
T°C	700-1200	700-900	< 900	< 900	£1500
tars	low	very high	intermediate	intermediate	absent
control	easy	very easy	intermediate	intermediate	very complex
scale	< 5 MW,	< 20 M,	10 <mw,<100< td=""><td>20<mw,<?< td=""><td>> 100 MW,</td></mw,<?<></td></mw,<100<>	20 <mw,<?< td=""><td>> 100 MW,</td></mw,<?<>	> 100 MW,
feedstock	very critical	critical	less critical	less critical	very fine particles

Biomass Gasification

Gasifier types

Graphics courtesy BTG

partners



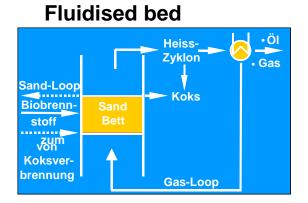
3. Pyrolysis

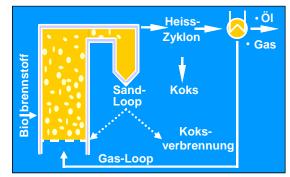
PYROLYSIS

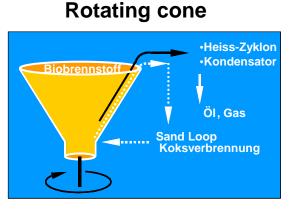
Heating of biomass in the complete absence of oxygen

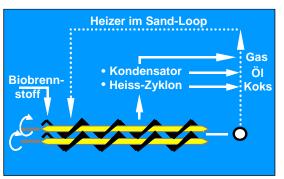
Three different categories of pyrolysis

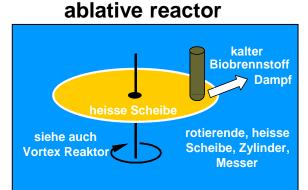
Biomass + heat
$$\rightarrow$$
 H_2 + $CO + CO_2 + CH_4 + H_2O$ + bio - oil + charcoal
Fast pyrolysis
Intermediate pyrolysis
Slow pyrolysis






Pyrolysis Reactors




Circulated/Bubbling fluidised bed

Twin screw

2sy⊓fel

 Production of green hydrogen, diesel and gasoline from sewage sludge via Thermo-Catalytic Reforming (TCR) technology.

Sewage sludge (SS) Intermediate Pyrolysis Gas Gas SS Char SS SS (Gas Pellets Pellets Pellets Gas (Gas) Gas (Gas) Gas Gas Gas **Biochar Formation** Biochar **Biochar Based Catalys** Post Pellets (Gas) Gas **Thermo-Catalytic** Reforme (Gas) (Gas) Gas)(Gas) **Reforming (TCR)** Gas Gas Biochar Pellets (Gas) (Gas) (Gas) (Gas) (Gas) 0 Refining **Syngas Upgraded Bio-oil**

Biochar

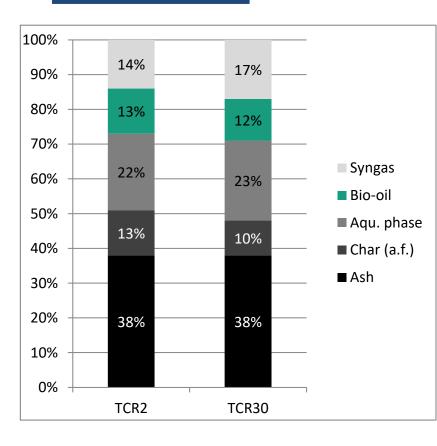
- Production of sustainable aviation fuel from waste cooking oil and waste biomass via TCR and Sustainable Aviation Through Biofuel Refining (SABR).
- Flagship commercialization and fuel performance certification.

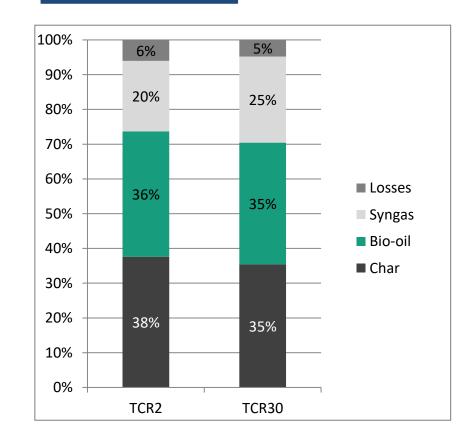
TCR Feedstocks

Over 50 different feedstocks tested in TCR

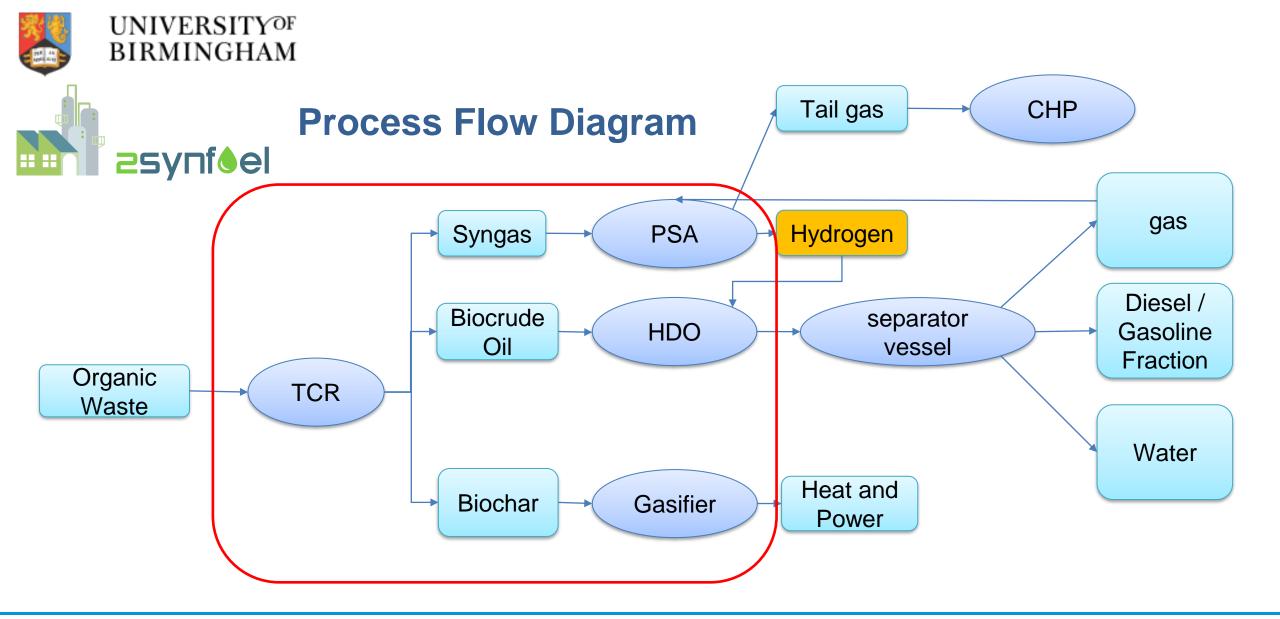
- Feedstock pre-conditioning steps
- Drying
- Granulating and pelleting
- For sewage sludge only drying is necessary
- 4 Products always produced from TCR
- Bio oil
- Water
- Syngas
- Char

TCR PRODUCTS - Conversion of Sewage Sludge


SEWAGE SLUDGE	BIO OIL	SYNGAS	CHAR	
	Fraunhofer UMSICHT			
C 26,2 m% H 4,3 m% N 3,7 m% S 0,6 m%	C 77,0 m% H 7,08 m% N 8,53 m%	H ₂ 39 v/v% CO 10 v/v% CO ₂ 22 v/v%	C 23,8 m% H 0,7 m% N 1,9 m%	
O (Diff.) 27,3 m%	S 1,02 m%	CH ₄ 8,7 ± 1 v/v%	S 0,7 m%	
Ash 37,9 m% H ₂ O 10,7 m% LHV 12,2 MJ/kg	O (Diff.) 6,3 m% TAN 4,45 mg KOH/g LHV 33,8 MJ/kg	C _x H _y 1,5 ± 1 v/v% LHV 17,7 MJ/m ³	O (Diff.) 1,2 m% Ash 74,1 m% LHV 9,0 MJ/kg	
LHV 12,2 MJ/kg FEEDSTOCK	LHV 33,8 MJ/kg	PRODUCTS	LHV 9,0 1017 kg	



TCR MASS AND ENERGY BALANCE


MASS BALANCE

ENERGY BALANCE

ToSynFuel plant

Gas treatment ToSynFuel

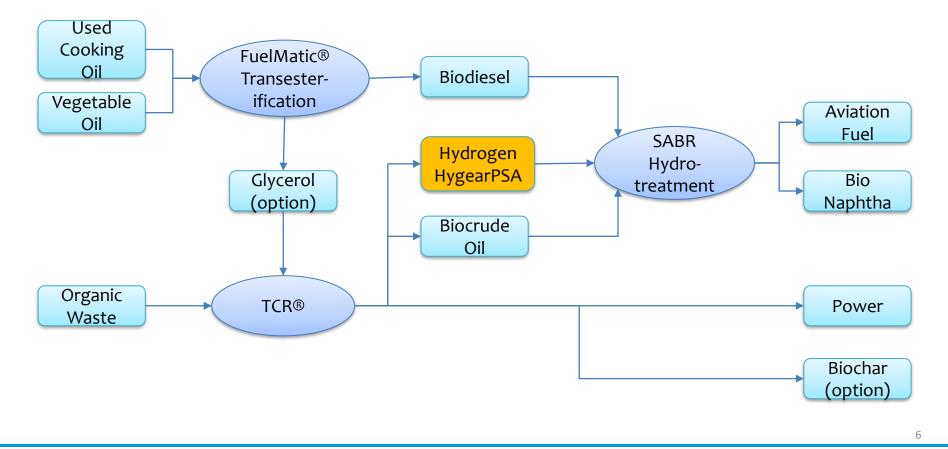
PSA ToSynFuel

UNIVERSITYOF BIRMINGHAM

BIRMINGHAM 25ynféel Compressors, H₂ tank ToSynFuel

<u>Hydro-treating Diesel Fraction Meets</u> <u>EN590 Standard for all properties</u>

Standar	d Value		Reference Product		TCR [®] -Product	
					Fractionated	
Diesel	EN 590			Diesel B7	TCR®-HBO	
min	max	Property	Unit	EN590		
51	-	Cetane Number		54	\checkmark	
820	845	Density at 15 °C	kg/m³	842,5	✓	
-	8	РАН	% (m/m)	4	n.a.	
-	10	Sulphur	mg/kg	n.a.	\checkmark	
55	-	Flash point	°C	67	\checkmark	
-	0,01	Ash content	% (m/m)	n.a.	√	
-	200	Water content	mg/kg	n.a.	√	
		Copper strip corrosion	sion			
Class 1	Class 1	(3 hours at 50 °C)	Class	n.a.	✓	
-	460	Lubricity at 60 °C	μm	165	√	
2	4,5	Viscosity at 40 °C	mm ² /s 3,3		\checkmark	
-20 (Winter)	0 (Summer)	CFPP	°C n.a.		\checkmark	
-	< 65	Volume at 250 °C	%V/V		✓	
85	-	Volume at 350 °C	%V/V		√	
-	360	95 %(V/V) recovered at	°C	360	\checkmark	
		Lower Heating Value	MJ/kg	42,49	\checkmark	
		Carbon	% (m/m)	86,5	\checkmark	
		Hydrogen	en % (m/m)		✓	
		Nitrogen	% (m/m)	n.a.	✓	
		Oxygen	% (m/m)	0,1	√	



<u>Kerosene fraction meets</u> <u>majority of ASTM D7566</u> <u>Specifications</u>

Specification	ASTM D7566	TCR Jet Fuel
HHV (MJ/Kg)	Min 42.8	43.4
S (wt%)	Max 0.3	< 0.1
Freezing Point (°C)	Max – 47	-50
Density, 15 °C (g/cm ³)	0.75-0.84	0.84
TAN (mg KOH/g)	Max 0.1	0.6
Viscosity, - 20 °C (cSt)	Max 8	3.2
Smoke Point (mm)	Min 25	13
Flash Point (°C)	Min 38	< 38

www.hydex.ac.uk

Thank you

