The Role of Hydrogen in Sustainable Aviation

There is no viable way to decarbonise aviation that does not involve hydrogen

What can we do now?

Sustainable Aviation Fuels

Novel propulsion technologies

What could we do now?

More efficient aircraft & engines

Airspace redesign

Contrails prediction & management

Sustainable Aviation Fuels

Bio-fuels

What are the challenges of SAF?

Scaling of the technology

Elimination of aromatics

Price

Engine & fuel system development

Novel propulsion technologies

Battery-only:

- 1/10th energy content of kerosene per kg
- Arduous life-cycles; high replacement
- Short range & small aircraft

Hybrid (conventional/SAF engine + battery):

- Heavy & complex: minimal CO₂ savings
- Potential for aircraft up to regional

Hydrogen (incl. hydrogen-battery hybrid):

- 3 x energy content of kerosene per kg
- Scalable technology
- Potential for all aircraft types

Hydrogen: propulsion

- No emissions other than heat & water
- Applicable to aircraft up to 100 seats (for now)
- Missions: lower & slower
- Fuel efficiency: 55%+
- EIS: 2026/7
- Produces NO_x + heat & water
 - More easily applicable to larger aircraft
 - Missions: high & fast
 - Fuel efficiency: 35%
 - EIS: 2035+

Direct Combustion

Fuel cells

Hydrogen: storage

- Highly pressurised tanks (350 or 700bar)
- Heavy
- Volume efficient
- Applicable to small aircraft
- Mature technology
- Ideal entry technology
- Cryogenic storage: H₂ boiling point is -252.9°C
- Takes up 4 x volume of kerosene
- Only solution for large aircraft
- Immature technology
- Long term solution ideally requires new aircraft design

Gaseous

Liquid

Hydrogen: infrastructure

- Mature production & logistics solutions with scale up in progress
- Can be economical in relatively small quantities
- Proximity to production site significantly reduces cost => offers energy resilience opportunities
- Benefits from multiple potential offtakers other than aviation
- Requires increase in renewable energy to provide electricity
- Perfect entry point for small air operations

- Mature production process in small quantities
- Logistics & storage of large quantities required for aerospace very immature; boil off issues (1%/day)
- Only likely to be economical if produced in large volumes gigahubs required
- Large amount of green energy required to liquify
- Aerospace only likely offtaker, making scale up difficult

Liquid

Hydrogen standards & regulation

Aircraft certification

Airline operations & refuelling

Maintenance, Repair & Overhaul (MRO)

Questions?

Comments?

Challenges?