

Solar Energy Integration Using an Energy Management System

Tolulope Falope Supervisors: Dr. Lao Liyun, Dr. Da Huo

11th January 2024

www.cranfield.ac.uk

Background

• The importance of renewable energy sources (RES) like solar energy in reducing carbon emissions and other greenhouse gases has contributed to an increase in integration into the conventional grid.

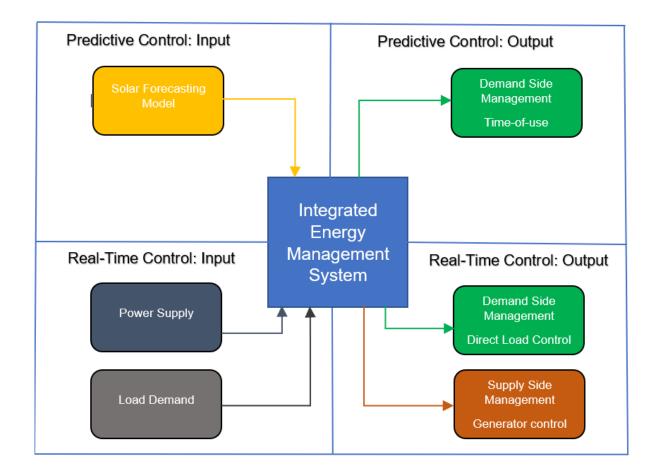
• The intermittent nature of RES means that an increase in grid penetration would lead to reliability and quality issues.

• Research Question: How can we improve solar energy penetration in a reliable and sustainable way?

Aims & Objectives

- Aim is to create an integrated energy management system (IEMS) that combines solar energy forecasting (SEF), generator control (GC), time-of-use (TOU) tariffs and direct load control (DLC), thereby improving the reliability of solar based systems so that they can be integrated into the conventional grid.
- Objectives
 - To assess different IEMS configurations and determine how individual components increase the reliability of solar-based power systems.
 - To determine the impact of low-data fusion in combining weather parameters from an on-site weather station and a local weather station to improve solar energy forecasting.
 - To determine the technical, economic, and environmental impact of the proposed IEMS for both on-grid and off-grid solar applications.
 - To determine the effect of direct load control for both commercial and residential applications.

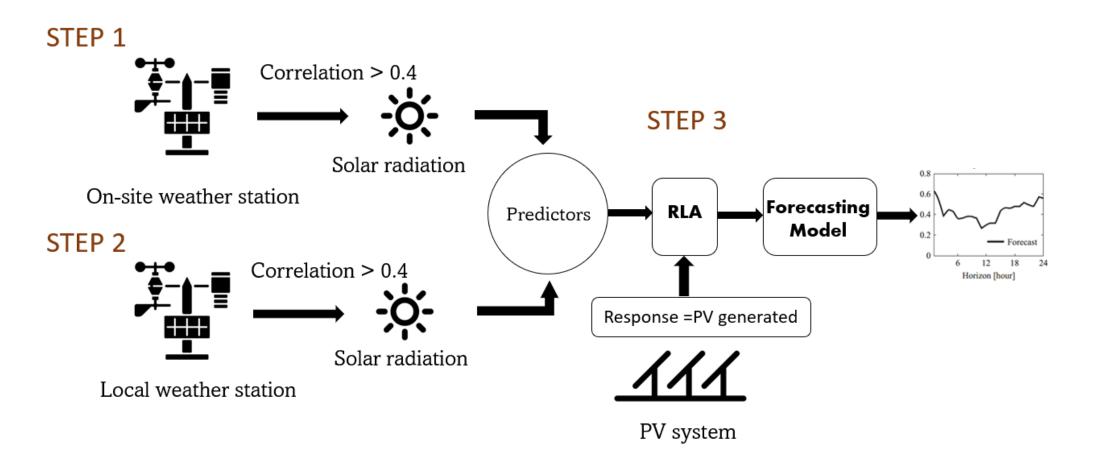
Methodological Approach - 1


- Literature review to identify research gaps
- Model development and validation: Solar Forecasting Approach
- Develop IEMS Algorithm
- Techno-economic Analysis of IEMS
 ➤Levelized Cost of Energy (LCoE), Net Present Value (NPV) etc.
- Optimisation of IEMS model using Performance Ratio Method
- Validate DLC

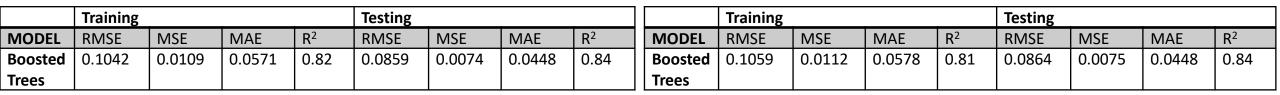
Key Findings 1 – IEMS Definition and Research Gap

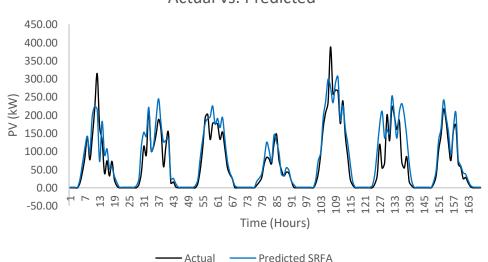
IEMS is a system that leverages advancement in technology and communication (particularly through the internet-of-things), integrating predictive and real-time controls to initiate both supply and demand responses in balancing the load and power supply in the grid.

			SSM		DSM
Ref	PV Forecasting	PV	DG	TOU	DLC
Srikranjanapert et al. [46]	×	\checkmark	×	\checkmark	×
<u>Harajli</u> et al. [42]	×	\checkmark	\checkmark	×	×
Ali et al. [58]	×	\checkmark	×	\checkmark	\checkmark
Mahmud et al. [56]	×	\checkmark	×	\checkmark	×
Kichou et al. [59]	×	\checkmark	×	×	×
Ozden et al. [60]	×	\checkmark	×	×	\checkmark
Rochd et al. [61]	\checkmark	\checkmark	×	\checkmark	\checkmark
Javed et al. [51]	×	\checkmark	\checkmark	\checkmark	×
Ouédraogo et al. [52]	\checkmark	\checkmark	×	\checkmark	×
Anusha et al. [57]	×	\checkmark	\checkmark	×	×
Cupples et al. [53]	\checkmark	\checkmark	×	×	×
Mohandes et al. [54]	\checkmark	\checkmark	×	×	×
George-Williams et al. [55]	×	\checkmark	×	×	×
Dinh et al. [62]	×	\checkmark	×	×	\checkmark
Silva et al. [63]	\checkmark	\checkmark	×	\checkmark	\checkmark
Ochoa et al. [64]	×	\checkmark	×	×	×
Sharda et al. [65]	\checkmark	\checkmark	×	\checkmark	×
Tabrizi 2022 [66]	×	\checkmark	\checkmark	\checkmark	×
This Study	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark


Key Findings 2 – IEMS Framework and Forecasting Approach

Current IEMS Framework


Key Findings - 3


• A novel three-step weather data solar forecasting architecture

 Photovoltaic power is an equal and strong alternative to solar radiation and can be used as reference parameter in predicting next-day SE generation.

Actual vs. Predicted

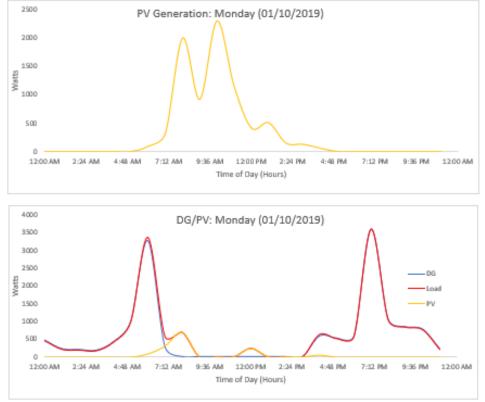
One-week Prediction Using Solar Radiation (SRFA)

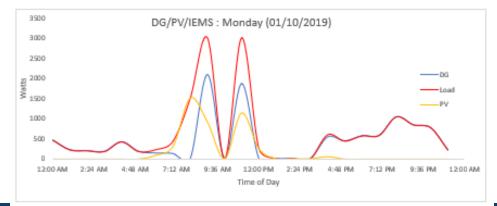
 $\begin{array}{c} 450.00 \\ 400.00 \\ 350.00 \\ 0000 \\ 50.00 \\ 100.00 \\ 50.00 \\ 0.00 \\ -50.00 \end{array} \right) \begin{pmatrix} 450.00 \\ 0000 \\ 50.00 \\ 0000 \\ -50.00 \\ 000 \\ -50.00 \\ 000 \\ -50.00 \\ 000 \\ -50.00 \\ 000 \\ -50.$

Actual vs. Predicted

One-week Prediction Using Photovoltaic Generation (PVFA)

Key Findings - 4

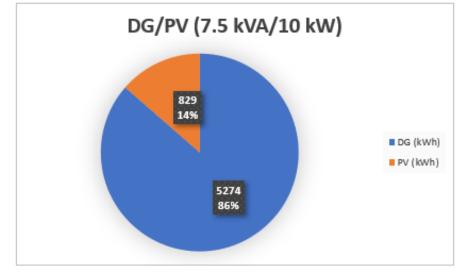

 The three-step weather data solar forecasting approach was validated for lower capacity PV systems in three other buildings with 8.26 kWp, 10.45 kWp and 15 kWp arrays.

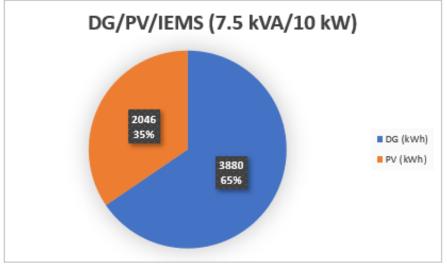

15 kWp	SRFA			PVFA				
MODEL	RMSE	MSE	MAE	R ²	RMSE	MSE	MAE	R ²
Boosted	0.0885	0.0078	0.0499	0.68	0.0922	0.0085	0.0522	0.65
Trees								
8.26 kWp	SRFA			PVFA				
MODEL	RMSE	MSE	MAE	R ²	RMSE	MSE	MAE	R ²
Boosted	0.0984	0.0097	0.0547	0.67	0.1002	0.0100	0.0559	0.65
Trees								
	•	•	•		•	•	•	
10.45 kWp	SRFA			PVFA				
MODEL	RMSE	MSE	MAE	R ²	RMSE	MSE	MAE	R ²
Boosted	0.1425	0.0203	0.0811	0.52	0.1406	0.0198	0.0794	0.53
Trees								

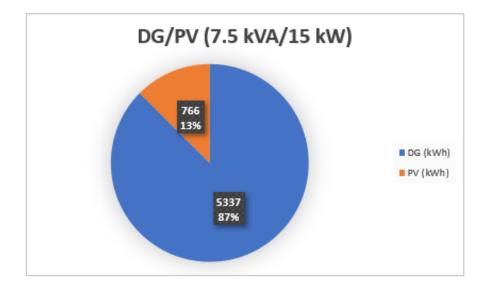
Case Study

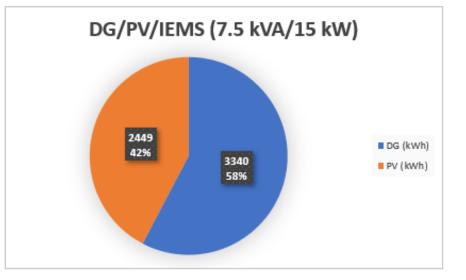
- Perform a techno-economic analysis for a 7.5kVA/10kW dg-solar hybrid configuration using the IEMS framework.
- Compare 2 configurations:
 DG/PV
 DG/PV/IEMS

Key Findings 5 – Comparison of DG/PV and DG/PV/IEMS Configurations




Key Findings 6 – Techno-economic Analysis of IEMS


			Performance	
	DG/PV	DG/PV/IEMS	DG/PV	DG/PV/IEMS
Lifetime expenditure	£333,584.23	£328,355.17		\checkmark
Lifetime net income	£138,816.17	£143,153.41		\checkmark
Lifetime net electricity generation	152,664 kWh	124,916 kWh	\checkmark	
PP	2.23 years	2.47 years	\checkmark	
NPV	£123,316.17	£125,453.41		\checkmark
LCCA	£210,268.06	£202,901.76		\checkmark
CBR	2.51	2.42		\checkmark
LCoE	£2.19/kWh	£2.63/kWh	\checkmark	
CO2 Emissions	489,187 kg CO2e	478,471 kg CO2e		\checkmark


Condition	Definition	Result
NPV > 0	Investment adds value	Project may be accepted
NPV < 0	Investment subtracts value	Project should be rejected
NPV = 0	Investment neither gains nor loses value	Project will break-even. Other criteria needed for decision
$IRR_2 > IRR_1$	Project 2 has a higher IRR than project 1	Project 2 is more desirable
LCCA > 0	Fails to generate net income	Project may be rejected
LCCA < 0	Generates net income	Project should be accepted
LCCA = 0	Breaks even	Adds no monetary value.
		Other criteria needed for
		decision
CBR > 1	Cost exceeds benefit	Project may be rejected
CBR < 1	Benefit exceeds cost	Project should be accepted
CBR = 1	Benefit equals cost	Adds no monetary value.
		Other criteria needed for
		decision
$PP_2 > PP_1$	Project 2 has a longer PP than	Project 1 could be more
	project 1	desirable
Cost > LCoE	Electricity cost exceeds LCoE	Greater return on capital
Cost < LCoE	LCoE exceeds electricity cost	Lower return and a possible
		loss

Key Findings 7 – PV Size Optimization Analysis

Limitations

- Research was limited to grid-tie configurations without a focus on batteries.
- Limited data from on-site weather station
- DLC data analysis yet to be completed

Conclusion

 IEMS that integrates solar energy forecasting (SEF), generator dispatch control (GC) as a SSM technique, time-of-use tariffs (TOU) and direct load control (DLC) as DSM techniques, is a viable solution and one that if successfully implemented can support solar integration.