

Hydrogen Liquefaction and Storage Recent Progress and Perspectives

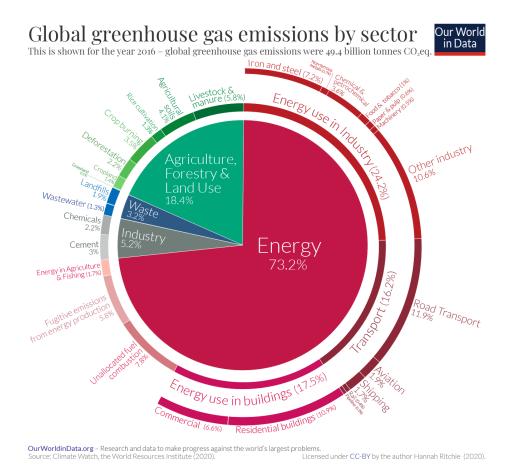
Tongtong Zhang, Lejin Xu, Yixuan Huang, Yulong Ding University of Birmingham Center for Energy Storage <u>*t.zhang.7@bham.ac.uk</u> www.birmingham.ac.uk/energystorage

Contents

Background

- The role of hydrogen in future energy systems
- The needs for liquid hydrogen
- Liquid hydrogen production, storage and transmission technologies and challenges
 - Hydrogen liquefaction
 - Liquid hydrogen storage
 - Liquid hydrogen transportation
- Economic aspects of liquid hydrogen
- Concluding remarks

Contents


Background

- The role of hydrogen in future energy systems
- The needs for liquid hydrogen
- Liquid hydrogen production, storage and transmission technologies and challenges
 - Hydrogen liquefaction
 - Liquid hydrogen storage
 - Liquid hydrogen transportation
- Economic aspects of liquid hydrogen
- Concluding remarks

Background - The role of hydrogen in future energy systems (A)

Data Speak

Carbon Emission for Energy -73.2%

- Energy Use in Building 17.5%
- Energy Use in Transport 16.2%
- Energy Use in Industry 24.2%

Transport (16.2%): electrification & H₂ provide routes to decarbonisation

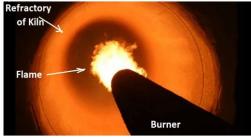
- Road Transport 11.9%:
- Aviation 1.9%
- Shipping 1.7%
- Rail 0.4%
- Pipeline 0.3%

Hydrogen provides a route towards part of transport sector that is hard-to-decarbonise through electrification: heavy truck, medium to long haul aviation, long-haul shipping, etc.

https://ourworldindata.org/

Background - The role of hydrogen in future energy systems (B)

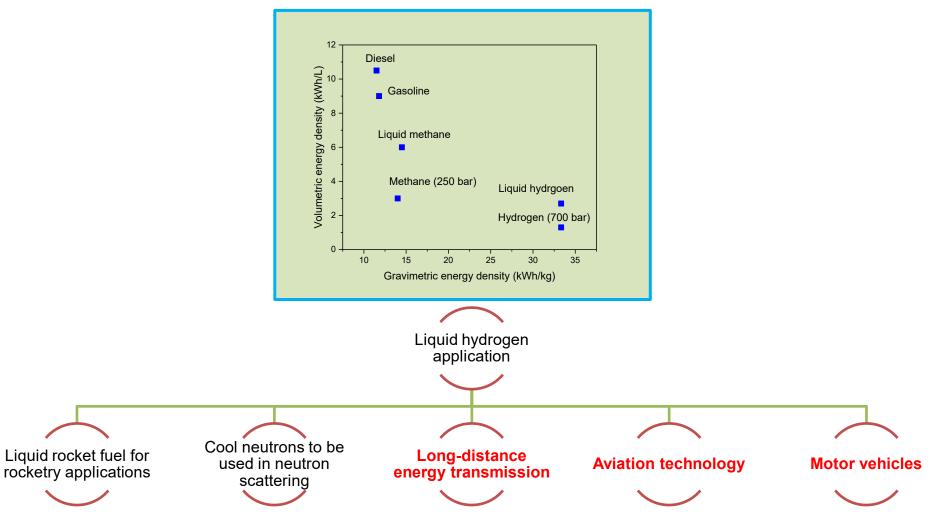
5


Foundation industry - metal, glass, cement, ceramics, chemical & papermaking

Steel Industry – Ironmaking

Glass Industry – Glassware making

Cement Industry – Rotary Kiln

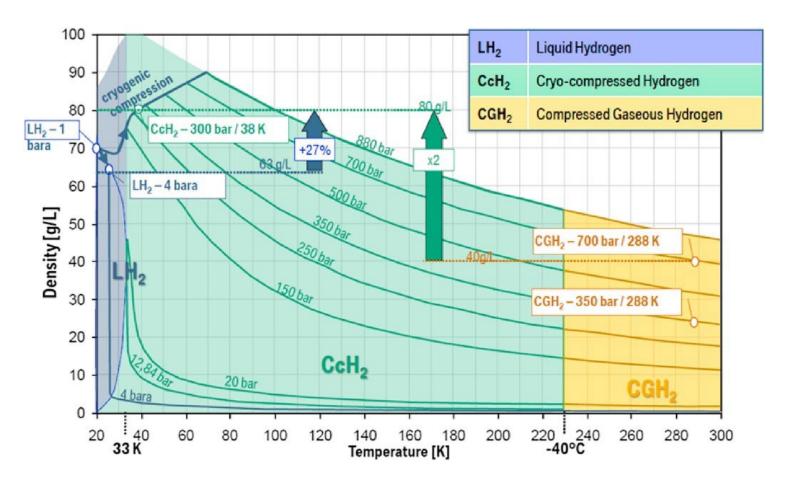

Ceramic Industry – Ceramic Firing Furnace

- High temperature, combination of continuous and batch operations
- Electrification is challenging due to little inertia; heat pumps do not work
- Waste heat abundant but with a low value chain
- Lots of small & medium sized, distributed companies using conventional technologies
- Crucial industrial sectors, matter to national security
- Low margin making the adoption of alternative fuels difficult for these industry

Hydrogen provides a route towards hard-to-decarbonise industrial sectors with carbon emissions of ~30%: direct emission (~5%) and energy related emission (~25%)

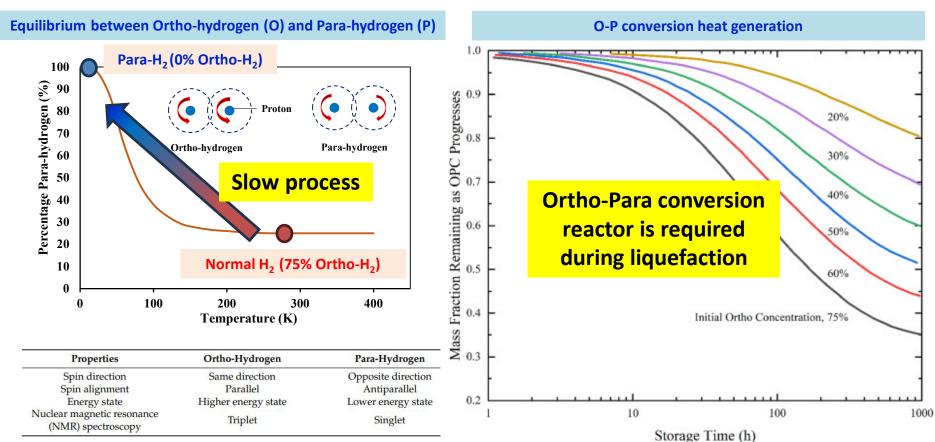
Liquid hydrogen has some salient characteristics

Contents



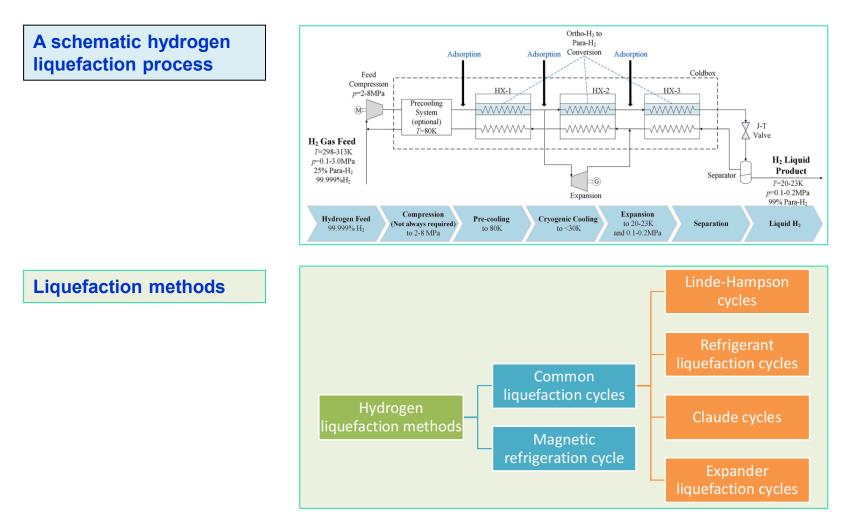
Background

- The role of hydrogen in future energy systems
- The needs for liquid hydrogen
- Liquid hydrogen production, storage and transmission technologies and challenges
 - Hydrogen liquefaction
 - Liquid hydrogen storage
 - Liquid hydrogen transportation
- Economic aspects of liquid hydrogen
- Concluding remarks


Density as a function of temperature and pressure

The challenges: Very low temperature, narrow operation temperature range even at high pressures

Tarhan & Çil (2021) Journal of Energy Storage, 40, 102676; Zhang et al. (2023) Renewable and Sustainable Energy Reviews, 176, 113204

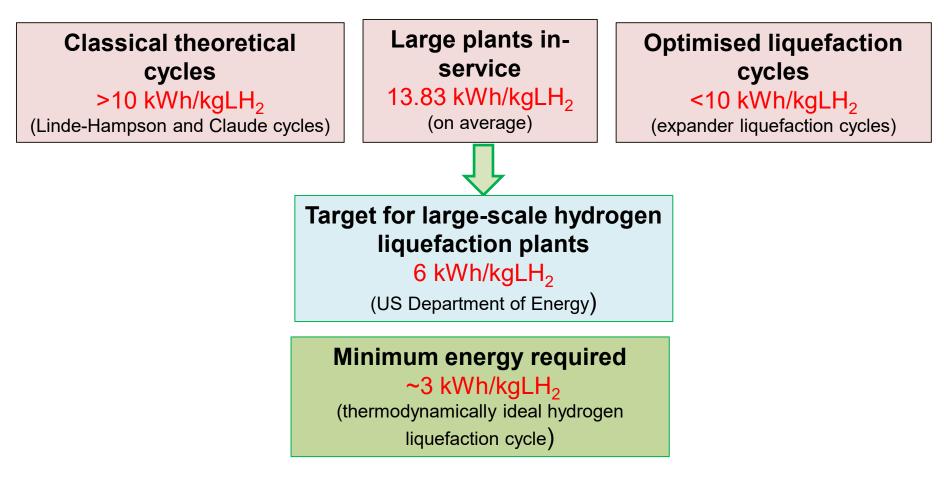

Ortho-Para Conversion

Aziz, M. (2021). Liquid hydrogen: A review on liquefaction, storage, transportation, and safety. Energies, 14(18), 5917.

The challenges: Boil-off problem - The heat generation of 527 kJ/kg > the latent heat of liquid hydrogen vaporization of 446 kJ/kg

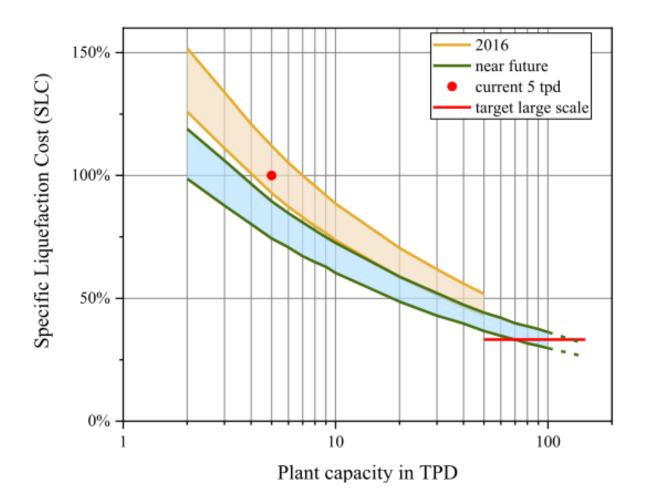


Hydrogen liquefaction technologies



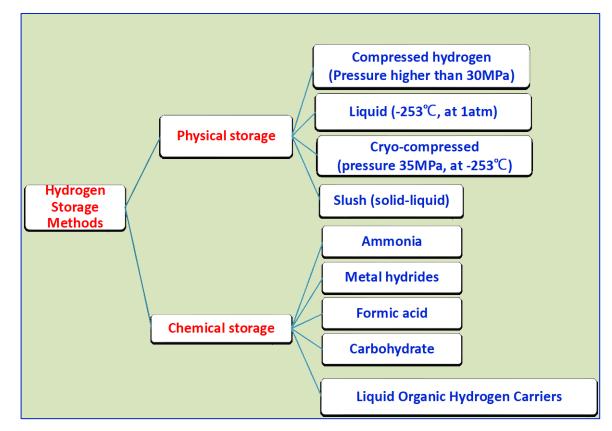
Summary of hydrogen liquefaction cycles – comparison of efficiency and energy consumption

Energy consumption performance - comparison between theoretical and commercial hydrogen liquefaction



Future trend in hydrogen liquefaction technologies

Items	Cur	rrent	Short to medium term	Long term
Liquefaction capacity	<3 tons/day	<50 tons/day	up to 150 tons/day	≥100 tons/day
Main refrigeration cycle	Brayton	Claude	High-pressure Claude	High-pressure Claude
Refrigeration medium	Helium	Hydrogen	Hydrogen	Hydrogen
Precooling cycle	Liquid nitrogen	Liquid nitrogen	Liquid nitrogen or mixed refrigerant	Mixed refrigerant
Feed pressure	10–15 bar	15–20 bar 20–25 bar		>20 bar
Compressor type	Reciprocating	Reciprocating	Reciprocating	Centrifugal
Specific energy consumption	>12.3 kWh/kgLH ₂	>10.8 kWh/kgLH ₂	7.7–10.8 kWh/kgLH ₂	<9 kWh/kgLH ₂
Investment cost (CAPEX)	++	ο	-	-
Operating cost (OPEX)	-	Ο	+	++
CAPEX & OPEX	-	ο	+	++
	o Neutra	al (+) St	rength (-) Weakr	ness



Projection of future costs of hydrogen liquefaction technologies

A summary of hydrogen storage methods / technologies: Classification

• Classification based on physics / chemistry

Comparison of characteristics of hydrogen storage methods / technologies

Storage medium state	Storage locations	Volume	Volumetric hydrogen storage density (g H ₂ /L)	Cycling	Geographical constraints
Concerns state	Salt caverns	Large	~5-20 g/L (50-200 bar)	Weeks - Months	Limited
Gaseous state	Pressurized containers	Small	~40 g/L (700 bar)	Daily	Not limited
Liquid state	Liquid hydrogen containers	Small-medium	~66 g/L (1 bar)	Days - Weeks	Not limited
	Ammonia containers	Small to medium	107 g/L (1 bar)	Weeks - Months	Not limited
	LOHCs containers	Small to medium	55 g/L (benzyltoluene, 1 bar)	Weeks - Months	Not limited

Adapted from <u>https://data.bloomberglp.com/professional/sites/24/BNEF-Hydrogen-Economy-Outlook-Key-Messages-</u> <u>30-Mar-2020.pdf</u> (with modification in terms of scale of volume)

Comparison between liquid-phase hydrogen storage methods

Assessment indicators		Liquid hydrogen	LOHC (MCH)	Ammonia
	Conversion	Hydrogen liquefaction small scale: + Hydrogen liquefaction large scale: -	Hydrogenation: O	Haber-Bosch process: +
	Reconversion	Liquid hydrogen regasification: +	De-hydrogenation: O	Ammonia cracking: O
Technolog y maturity	Tank storage	0→+	+	+
	Transport	Truck: + Ship: O→+	Truck: + Ship: +	Truck: + Ship: +
	Supply chain integration	0→+	0	+
Conversion and reconversion total energy consumption ^b		Current stage: 25-40% LHV _{H2} Potential: ~18% LHV _{H2}	Current stage: 35-40% LHV _{H2} Potential: 25% LHV _{H2}	Conversion: 7-18% LHV _{H2} Reconversion: <20% LHV _{H2}

¹ +: high technology maturity (proven and commercial), O: medium technology maturity (prototype demonstrated), -: low technology maturity (validated or under development); small scale: <5 tons/day, large scale: ≥ 100 tons/day.

² Given as a percentage of the lower heating value of hydrogen (values are for high-purity hydrogen that can be used in fuel cells).

Comparison between liquid-phase hydrogen storage methods

Assessment indicators		Liquid hydrogen	LOHC (MCH)	Ammonia
	Conversion	Hydrogen liquefaction small scale: + Hydrogen liquefaction large scale: -	Hydrogenation: O	Haber-Bosch process: +
	Reconversion	Liquid hydrogen regasification: +	De-hydrogenation: O	Ammonia cracking: O
Technolog y maturity	Tank storage	0→+	+	+
	Transport	Truck: + Ship: O→+	Truck: + Ship: +	Truck: + Ship: +
	Supply chain integration	0→+	0	+
Conversion and reconversion total energy consumption ^b		Current stage: 25-40% LHV _{H2} Potential: ~18% LHV _{H2}	Current stage: 35-40% LHV _{H2} Potential: 25% LHV _{H2}	Conversion: 7-18% LHV _{H2} Reconversion: <20% LHV _{H2}

¹ +: high technology maturity (proven and commercial), O: medium technology maturity (prototype demonstrated), -: low technology maturity (validated or under development); small scale: <5 tons/day, large scale: ≥ 100 tons/day.

² Given as a percentage of the lower heating value of hydrogen (values are for high-purity hydrogen that can be used in fuel cells).

Comparison between liquid-phase hydrogen storage methods

Assessment indicators		Liquid hydrogen	LOHC (MCH)	Ammonia
Co	Conversion	Hydrogen liquefaction small scale: + Hydrogen liquefaction large scale: -	Hydrogenation: O	Haber-Bosch process: +
	Reconversion	Liquid hydrogen regasification: +	De-hydrogenation: O	Ammonia cracking: O
Technolog y maturity	Tank storage	0→+	+	+
	Transport	Truck: + Ship: O→+	Truck: + Ship: +	Truck: + Ship: +
	Supply chain integration	0→+	0	+
Conversion and reconversion total energy consumption ^b		Current stage: 25-40% LHV _{H2} Potential: ~18% LHV _{H2}	Current stage: 35-40% LHV _{H2} Potential: 25% LHV _{H2}	Conversion: 7-18% LHV _{H2} Reconversion: <20% LHV _{H2}

¹ +: high technology maturity (proven and commercial), O: medium technology maturity (prototype demonstrated), -: low technology maturity (validated or under development); small scale: <5 tons/day, large scale: ≥ 100 tons/day.

² Given as a percentage of the lower heating value of hydrogen (values are for high-purity hydrogen that can be used in fuel cells).

Liquid hydrogen transportation

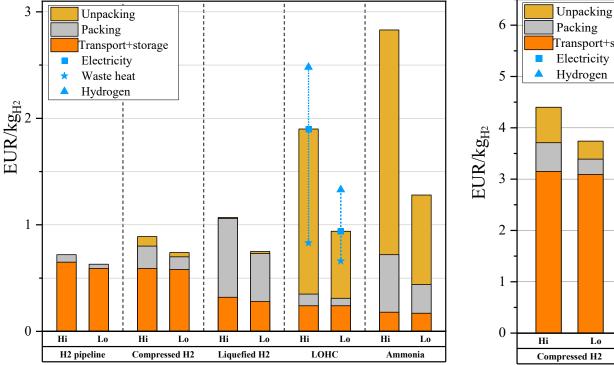
Transportation method	Transportation distance	Pressure	Hydrogen amount	Tank volume	BOG formation (per day)	Application examples or projections
Road	Mid-range distance	≤7bar	4 ton per truck	≤ 64 m³	0.5 vol%	Air Products transports liquid hydrogen via liquid semi- trailers with a capacity of 12,000 to 17,000 gallons (45-64 m ³).
Railway	>1000 km	≤ 7 bar	7 ton per rail car	105 m³	0.2 vol%	National Renewable Energy Laboratory estimated that LH ₂ rail delivery cost is likely to be lower than that of CGH ₂ and LH ₂ trucks/ pipelines delivery for long-distance and large-scale application.
Maritime	Transoceanic delivery	≤7 bar	60 ton per tank	1,250-40,000 m ³	<0.2 vol%	A pilot-scale liquid hydrogen supply chain between Australia and Japan (HySTRA Project, 1250 m ³ ship) has been completed in 2022.

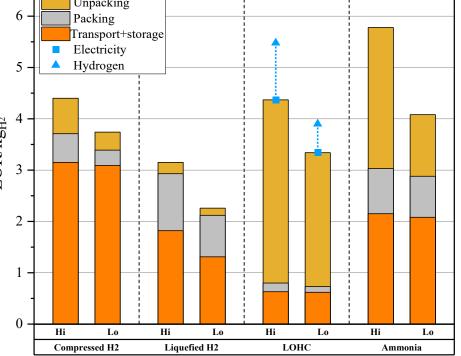
Contents

Background

- The role of hydrogen in future energy systems
- The needs for liquid hydrogen
- Liquid hydrogen production, storage and transmission technologies and challenges
 - Hydrogen liquefaction
 - Liquid hydrogen storage
 - Liquid hydrogen transportation
- Economic aspects of liquid hydrogen
- Concluding remarks

Current and projected future levelized cost of storage (LCOS) of different hydrogen storage methods

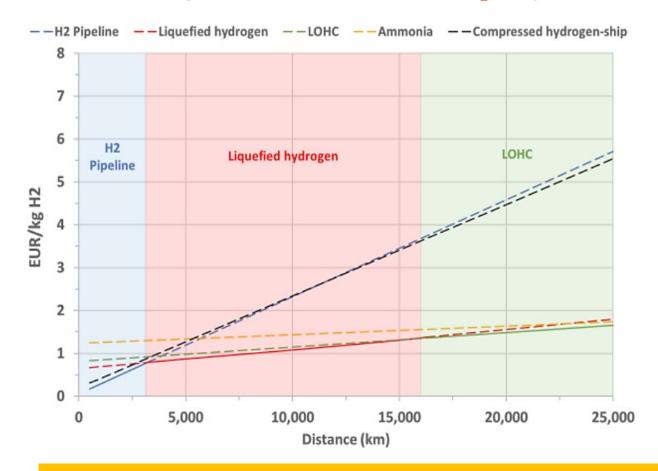



BloombersmallgNEF. Hydrogen Economy Outlook: Key messages. 2020.

Economic aspects of liquid hydrogen - longdistance transportation

Projected costs (2030-2035) of green hydrogen delivery with different storage methods for a transporting distance of 2500 km

Delivering green hydrogen to a single customer - 1 MtH₂ per year


Delivering green hydrogen to a network of 270 hydrogen refuelling stations - 500 km distribution distance & 0.1 MtH₂ per year

Assessment of Hydrogen Delivery Options. The European Commission's science and knowledge service (joint research centre); 2021.

25

Projected costs (2030–2035) of clean hydrogen delivery for different storage methods vs transport distance in single end-user scenario (1 Mt/H₂ per year)

Liquid hydrogen provide an opportunity for long-distance energy transmission (e.g., intercontinental trade)

Assessment of Hydrogen Delivery Options. The European Commission's science and knowledge service (joint research centre); 2021.

Contents

Background

- The role of hydrogen in future energy systems
- The needs for liquid hydrogen
- Liquid hydrogen production, storage and transmission technologies and challenges
 - Hydrogen liquefaction
 - Liquid hydrogen storage
 - Liquid hydrogen transportation
- Economic aspects of liquid hydrogen
- Concluding remarks

- Key factors limiting the use liquid hydrogen are <u>high energy penalty</u> due to high energy consumption of hydrogen liquefaction (>10 kWh/kgLH₂ on average) and <u>high hydrogen boil-off losses</u> during storage (1-5% per day). Solutions include:
 - Energy consumption: Innovative hydrogen liquefaction cycles and more efficient components, system scale and optimisation, which could lead to ~6 kWh/kgLH₂.
 - Hydrogen boil-off losses: Innovative design and optimisation of tank shape, structure, insulation and thermal management, as well as optimisation of supply chain, which could lead to a boiling rate below 1% vol, and even 0.1% vol per day.
- Liquid hydrogen could provide an opportunity as a <u>key long-distance</u> <u>energy transmission method</u> for distances ≥ 2000-3000 km due to cost advantages
- Countries with significant ship building industries could see an opportunity in developing <u>liquid hydrogen based maritime transport</u>

Thank you!

