

Advanced solutions for hydrogen zero emission fuel

Hydrogen Researcher Festival Loughborough University, 04 July 2024

UNIVERSITY OF DERBY

alfairing a

TRANS ONTATION ONLY

Institute for Innovation in Sustainable Engineering (IISE)

Dr Stefano Valvano Prof Angelo Maligno

Hydrogen Storage

occupied by 5 kg of hydrogen

Volume (liters)

100

500

300

How hydrogen is stored

absorption/adsorption

Solid

Physical based

Material based

Hydrogen Gel

Figure 1. Commercial automotive hydrogen storage technologies occupy the extremes of this phase diagram. Hydrogen is often stored as a compressed gas (red dot) at ambient temperature (horizontal axis), very high pressure (dotted lines), and relatively low density (vertical axis). Hydrogen is much more compact as a cryogenic liquid (blue dot) but with higher energetic cost (solid lines indicate the theoretical minimum work, also known as thermomechanical exergy) to compress and/or liquefy hydrogen. Cryogenic capable pressure vessels have flexibility to operate across a broad region (shaded in green) of the phase diagram, and therefore can be fueled with gaseous H_2 at a low energetic cost when energy or fuel cost savings is important or with LH_2 when long driving range, or low-pressure operation is desired.

Hydrogen Tank Concept

Hydrogen Tank Type

Туре	Schematic	Materials			Statement of the local division of the
		Metal	Composite	Polymer	
I	Metal	Steel/Al	1	1	Contraction of the local division of the loc
II	Metal Liner Fibre Hoop Wrap	Steel/Al liner	Filament windings around the cylinder part		
III	Metal Liner Fibre Full Wrap	Al/Steel liner	Composite over-wrap (fibre glass/aramid or carbon fibre)	1	
IV	Polymer Liner Fibre Full Wrap	1	Composite over-wrap (carbon fibre)	Polymer liner	
V	Fibre	1	Composite	/	

Hydrogen Tank Applications

Hydrogen Tanks

(High pressure solutions)

Industrial applications

Buildings and smart cities

Automotive

derby.ac.uk

UNIVERSITY OF **DERBY**

Hydrogen Tank for aviation

Courtesy of Airbus Liquid H₂ tank

Hydrogen Tank from concept to design

UNIVERSITY OF DERBY

Outcomes

Hydrogen Awards 2024

High Commendation trophy for the "UK Universities' Award for excellence in hydrogen research and innovation"

Hydrogen Tank Working Conditions:

Tank Filling Simulation (Transient Analysis)

Hydrogen Tank Working Conditions: Thermal Stress analysis of the filling simulation (Transient Analysis)

Heat transfer analysis based on CFD results

Metal liner

Thermo-mechanical transient Stress analysis

Metal liner

Hydrogen Tank with single wall:

Multilayered design study

Loads and boundary conditions

1 Aluminum layer wall

Total displacement

Von Mises stress

3 layers wall [Aluminum / Foam /Aluminum]

Temperature

Von Mises stress

derby.ac.uk

UNIVERSITY OF

3 layers wall [Aluminum / Foam /Aluminum]

Von Mises stress

Through-the-thickness path

3 layers wall [Aluminum / Foam /Aluminum]

INIVERSITY OF

3 layers wall [Composite / Foam /Aluminum]

3 layers wall [Composite / Foam /Aluminum]

Slosh analysis for liquid fuel tanks

Anti-slosh internal walls

Total displacement

Von Mises stress

UNIVERSITY OF DERBY

Advanced solution for Liquid Hydrogen Tank

Double cryo-cooler system for control pressure

Recent interests for the Hydrogen Tank Failure Analysis :

Hydrogen embrittlement modelling

Background for Hydrogen embrittlement modelling

H-enhanced localized plasticity (HELP)Interface-enhanced decohesion (HEDE)Other mechanisms (slip bands)

1st: H diffuses into the grains

2nd: H diffuses into the grain boundaries

UNIVERSITY OF DERBY Change of mechanical properties (due to H) in steels

M. Wang et al. / Materials Science and Engineering A 398 (2005) 37-46

Hydrogen embrittlement Modelling strategy

Loss of toughness in H-charged samples

Conclusions

- Thin-walled hydrogen tanks are employed in different industrial applications with different working conditions. Therefore, multilayered design of hydrogen tanks will be more requested in the coming years.
- The use of hydrogen in aeronautics transportation systems is very challenging. Complex and advanced solutions are under investigation.
- The use of liquid hydrogen (LH2) at low pressure leads to the design of tanks working at cryogenic temperature (lower than 30 K).
- To reduce the cooling costs during operations, it is necessary to design tanks with effective isolation solutions.
- It is mandatory to study the filling process of tanks in order to capture the thermal shock faced by the structure.
- A proper thermal-stress analysis has to be conducted to choose the optimal stacking sequence for the tank wall.
- The embrittlement effect has to be considered into a multiscale campaign analysis to prevent possible hydrogen leaks during operations.

University of Derby, Kedleston Road, Derby, DE22 1GB T +44 (0)1332 591044 E opendays@derby.ac.uk

THANK YOU

KRNKKKKNN

The second second

