

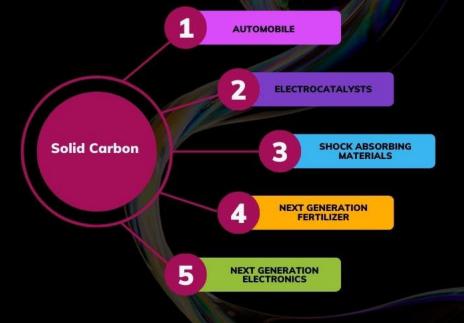
H₂ 2023 Vs 2050

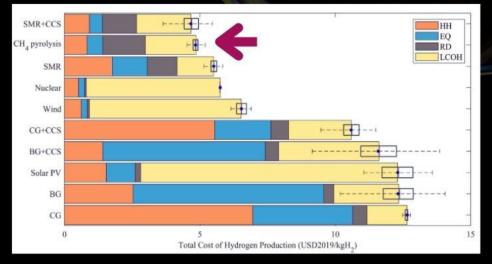
- Current Global demand for Hydrogen: ~94.3 million metric tons p.a. (2021) and will be doubled by 2030^a.
- Demand by 2050: 660 million metric tons p.a.

Type of hydrogen	LCOH* (USD /kg of H ₂)	Energy requirement (kWh /kg of H ₂	C-intensity (kg/kg of H_2)
Grey (SMR*)	1.35	0.31	9.26
Blue (SMR+CCS*)	2.01	1.11	1.03
Green	9.49	54.2	<1 (if renewable energy is used)
Turquoise (By methane cracking)	1.87	11	< 1 (if renewable energy is used)
Bio Hydrogen (AD*+Turquoise)	<1	~11	Negative

	2021	2050
Steam Methane Reforming (SMR) b	:76%	~0%
Coal Gasification (CG) ^b	:22%	~0%
Electrolysis ^b	:2%	60%
Alternative methods	:<1%	40%

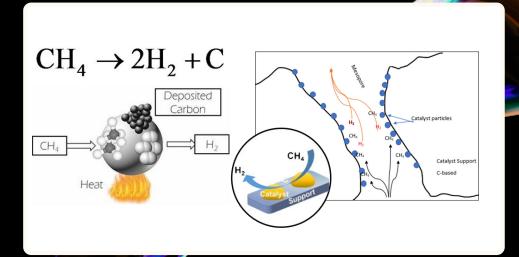
a: https://www.statista.com/statistics/1121206/global-hydrogen-demand/

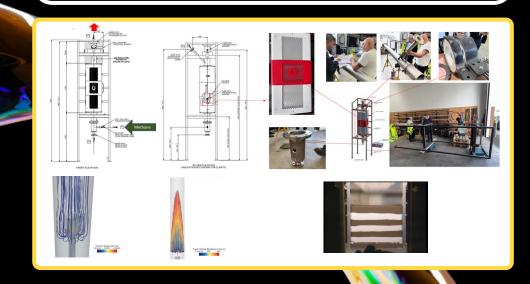

 $C + 2H_2$



1. https://doi.org/10.1016/j.ijhydene.2023.12.042

2. https://doi.org/10.1016/j.apenergy.2020.115958


RESEARCH AREAS


REACTION OPTIMISATION

REACTOR DEVELOPMENT/SCALE-UP

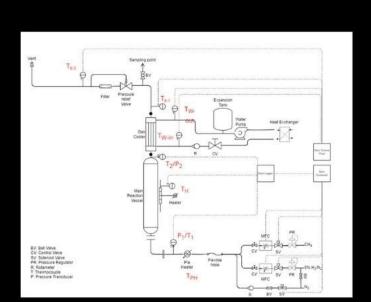
VALUE ADDITION TO CARBON

CARBON BUDGETING

THERMAL **MATERIALS**

HIGH INTEGRITY MATERIALS

NEXT GENERATION FERTILISER


CARBON FOOTPRINT LIFE CYCLE ANALYSIS TECHNOECONOMIC ANALYSES

TECHNOLOGY UPSCALING: THERMOCATALYTIC METHANE CRACKING

CONVERSION OF THE PROCESS INTO A CONTINUOUS STATE FROM BATCH STATE

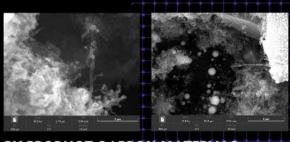
Reactor re-design
Carbon dislodging characteristics via digital twin
Functional Verifications

TECHNOLOGY SCALE-UP ROADMAP

Reactor Modification

Successful production ~80% conversion yield of H2

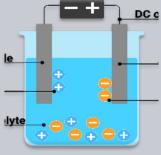
PILOT SCALE DEMONSTRATION

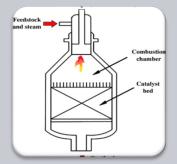

Developing a pilot scale facility
Successful 24 hr demonstration
Converting to a continuous process from the learnings taken from the previous reactors.

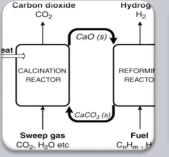
2024

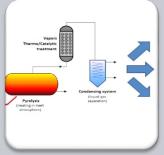
CONTINUOUS PILOT SCALE DEMONSTRATION

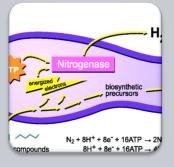
BY PRODUCT CARBON MATERIALS

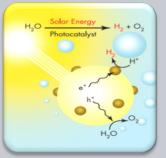



COMMERCIAL H2 PRODUCTION


How does each method affect the cost?


(Levelised costs of H₂ from 2016-2019, basis as close as possible, adding CCS lowers TRL slightly)





Steam Methane Reforming (SMR)

+ CCS

TRL = 9LCOH ≈

£2.40 /kg

Electrolysis – Wind, solar, nuclear

> TRL = 9LCOH ≈

£4.5-9 /kg

Autothermal reforming (ATR) + GHR +CCS

TRL = 9

LCOH ≈

£2.70 /kg

Sorption Enhanced

Steam Methane

Reforming (SE-SMR)

TRL = 6

LCOH ≈

£1.90 /kg

Coal / biomass Gasification or methane pyrolysis

+ CCS

TRL = 8

LCOH ≈

£2.50 /kg

Biological methods

TRL = 3

LCOH >

£11 /kg

Water splitting – Photon based

TRL = 3

LCOH ≈ £1.50 /kg

Scan the QR or use link to join

https://forms.office.com/ e/FTJfuEXB5X

Copy link

Which of the following do you believe will be the most significant factors influencing the development and adoption of hydrogen energy between 20...

