
Dr Fabian Ejim Postdoctoral Research Associate

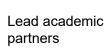
Research Team:
Dr Scott Banks (Lecturer)
Mr Srigan Moharir (PhD Student)

EBRI - Aston University

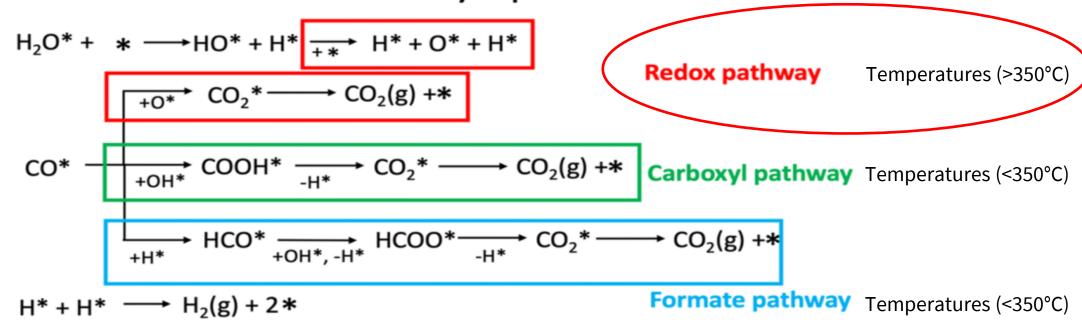
Gasification for Negative Emissions



Gasification



Operated at variable conditions



Water-Gas Shift Reaction (WGSR)

partners

$$CO + H_2O \longleftrightarrow CO_2 + H_2$$

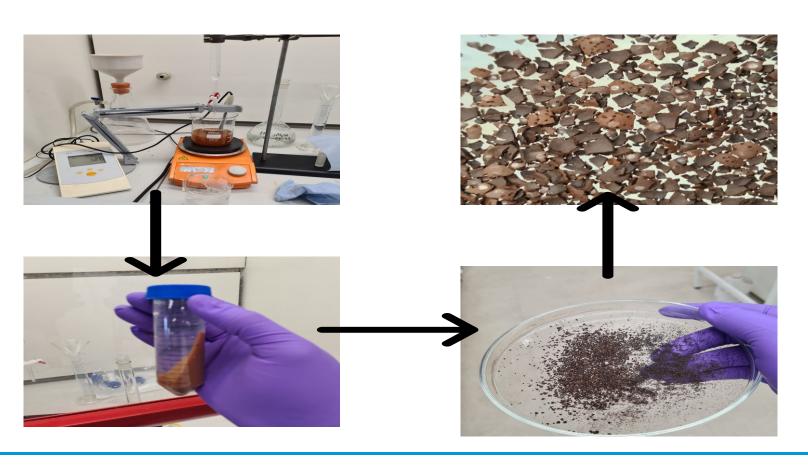
Elementary Steps:

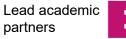
Redox Pathway Chemistry

- CO reacts with an oxygen atom on a catalyst surface (O*) to form CO₂, leaving behind a vacancy (⊡)
- $CO + O \xrightarrow{*} CO_2 + \Box$
- Steam fills the vacancy, dissociating into hydroxyl (OH*) and hydrogen (H*) species.
- $H_2O + \Box \to OH^* + H^*$
- OH* and H* recombine to form H₂, regenerating the oxygen site on the catalyst
- $OH^* + H^* \to H_2 + O*$

Demonstration System

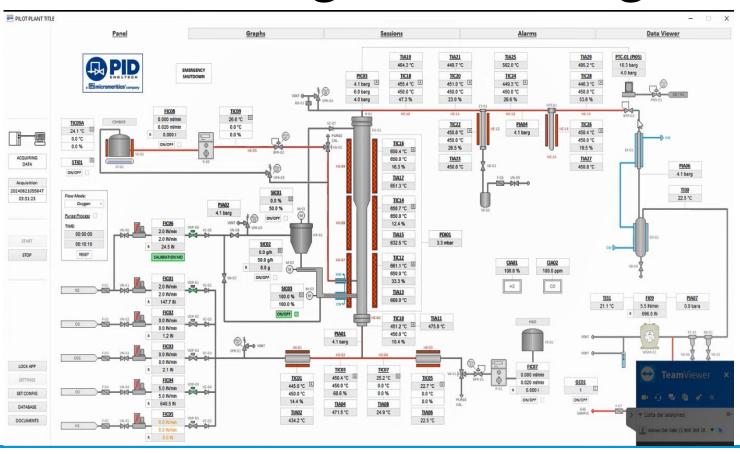
- A 200g/h bubbling fluidised bed gasifier
- Pressurised up to 6~10bar
- Temperatures of 450°C 650°C
- Inlet gases are N₂, steam, air, CO, and O₂
- Feedstocks woody biomass, MSW, RDF, bioplastics, liquid effluents

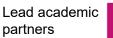




Catalysts Preparation

- Novel catalysts have been synthesised
- Characterisation of these catalysts are ongoing
- Ex-situ and in-situ testing of these catalysts in gasification process are ongoing





Process design, modelling and optimization

- Design the experiment using RSM CCDs and Box Behnken
- Run experiments, analyse syngas and generate real-time data
- Develop a CFD model of BFB gasifier
- Develop a Simulink model of BFB gasifier
- Input experimental data for models' validation
- Compare model results with experiments and optimise operating conditions
- Use model results to guide experiments

8

Engagement with Industry Partners

Industry collaboration on biomass feedstocks: Received willow pellets from industry partners for experimental analysis and awaiting additional samples from the Biomass Connect innovation trials.

Partnership-driven gasification research: Operating a pressurised advanced gasification plant in collaboration with industry, producing hydrogen-rich syngas for real-world applications.

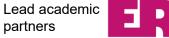
Cutting-edge Digital Twin integration: Collaborating with industry to integrate experimental data and CFD modelling into Digital Twin Technology for enhanced process monitoring and optimisation.

Get in touch

Internal and external collaborators are fundamental

Dr Fabian Ejim

f.ejim@aston.ac.uk


supergen-bioenergy@aston.ac.uk

www.supergen-bioenergy.net

Q&A

partners

