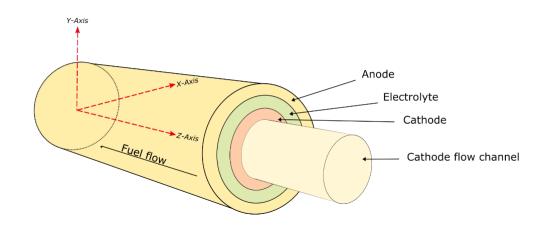


Accelerating the new hydrogen economy in the Midlands

SOFC System Longevity:
Advanced Modelling,
Optimisation, and
Machine Learning
Predictions

Clyde-Theodore Batista 28th April 2025

Aston University



Introduction: What are SOFCs?

- Solid Oxide Fuel Cells (SOFCs) convert chemical energy directly into electrical energy through electrochemical reactions.
- Offer high electrical efficiencies (typically range from 40% to 60%), reaching up to 80% in CHP applications.
- Primarily utilise hydrogen as fuel but can also operate on various hydrogen carriers with appropriate reforming and impurity removal strategies.
- Commonly applied in off-grid power generation, Combined Heat and Power (CHP) systems, and emergency back-up power.

RESEARCH **MOTIVATION**

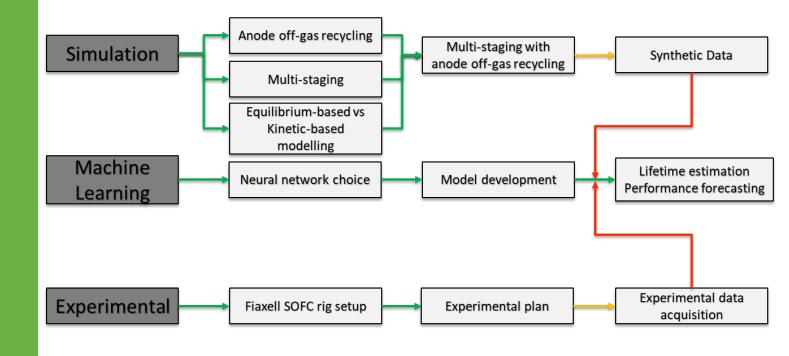
Challenges:

- Durability issues: thermal mismatch, multifaceted degradation, local instabilities.
- Lack of large, high-quality experimental datasets.
- Difficulty replicating real-world degradation in system models.

Motivation:

- Commercialisation hindered by durability and lifetime uncertainties.
- End-of-life and second-life pathways poorly defined.
- Insufficient data limits accurate lifetime prediction and maintenance planning.

RESEARCH AIMS


- **Optimise system configurations** (multi-staging, AOGR) to enhance fuel utilisation and extend system lifetime.
- Build and validate a machine learning framework (BiLSTM) for predicting voltage degradation and Remaining Useful Life (RUL).
- Commission experimental equipment and establish baseline performance characteristics of SOFCs.
- Evaluate initial SOFC durability to inform and define future experimental testing plan.
- Propose an integrated methodology combining experimental, simulation, and machine learning approaches for future SOFC lifetime prediction.

RESEARCH OVERVIEW

Aspen Simulation: Base Model

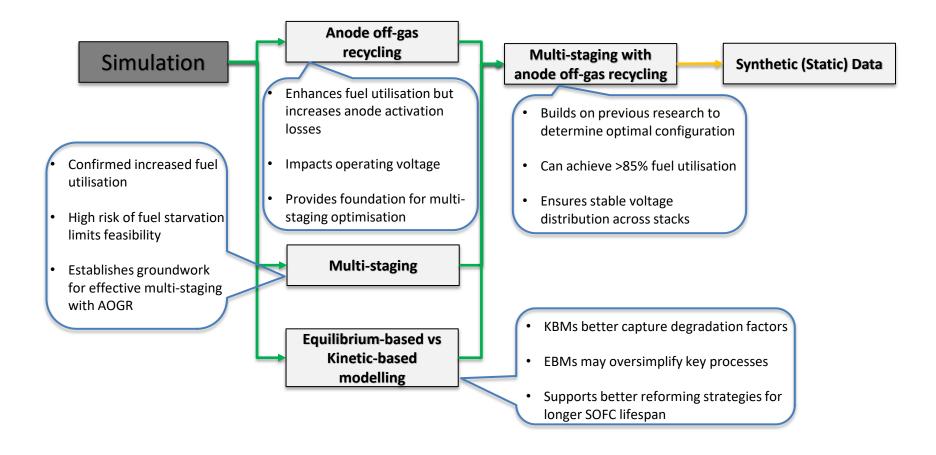
- Electrochemical parameters were calculated using semiempirical relations from Zhang et al.
- The base design is based on the Siemens-Westinghouse SOFC platform.
- All subsequent system configurations were developed by adapting this model.

Variable/Parameter	W. Zhang et al., 2005	W. Doherty et al., 2010	T. R. Tanim, 2012	This work	% Deviation
Voltage, (V)	0.70	0.68	0.69	0.69	0
Current density, (mA/cm²)	178.0	182.9	182.0	180.7	-0.15
Pre-reforming temperature, (ºC)	536.0	535.1	535.0	535.1	-0.05
Cathode inlet temperature, (°C)	821.3	823.7	826.0	826.0	0.28
Stack exhaust temperature, (ºC)	834.0	833.7	836.0	793.9	-4.87
Anode outlet composition					
H ₂ O	50.9%	50.9%	50.9%	50.9%	0.00
CO ₂	24.9%	24.9%	24.9%	24.9%	0.00
H ₂	11.6%	11.6%	11.6%	11.6%	0.00
СО	7.4%	7.4%	7.4%	7.4%	0.00
N ₂	5.1%	5.1%	5.1%	5.1%	0.00
Stack exhaust composition					
N ₂	77.3%	77.3%	77.2%	77.3%	0.04
02	15.9%	15.9%	15.7%	15.9%	0.42
H ₂ O	4.5%	4.5%	4.7%	4.5%	-1.46
CO ₂	2.3%	2.3%	2.4%	2.3%	-1.43
Gross electrical efficiency (LHV), (%)	52.0%	51.3%	51.7%	52.0%	0.65

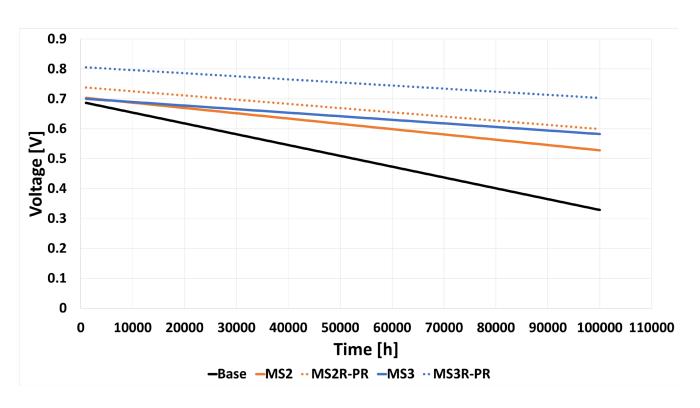
Zhang, W., Chan, S.H., and Li, J., 2005. Simulation of a tubular solid oxide fuel cell stack using AspenPlus[™] unit operation models. Energy Conversion and Management, 46(2), pp.181–196.

Doherty, W., Reynolds, A., and Kennedy, D., 2010. Computer simulation of a biomass gasification-solid oxide fuel cell power system using Aspen Plus. Energy, 35(2), pp.4545–4555.

Tanim, T.R., 2012. Modelling of a 5kWe Solid Oxide Fuel Cell Based Auxiliary Power Unit Operating on JP-8 Fuel.

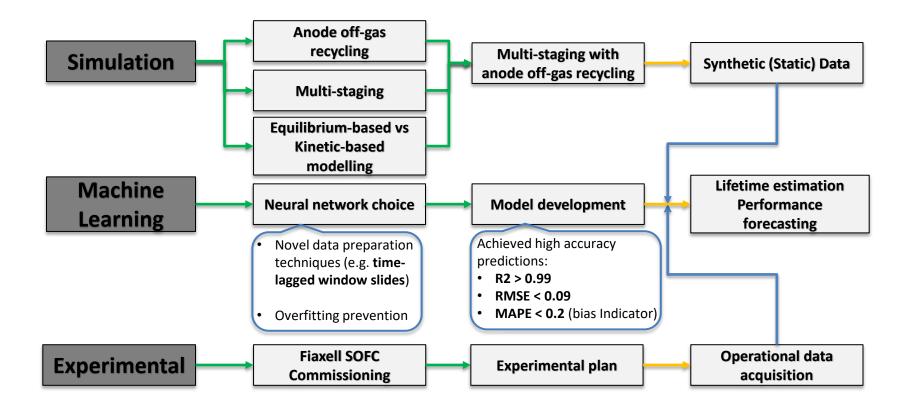


System Configuration: Optimisation

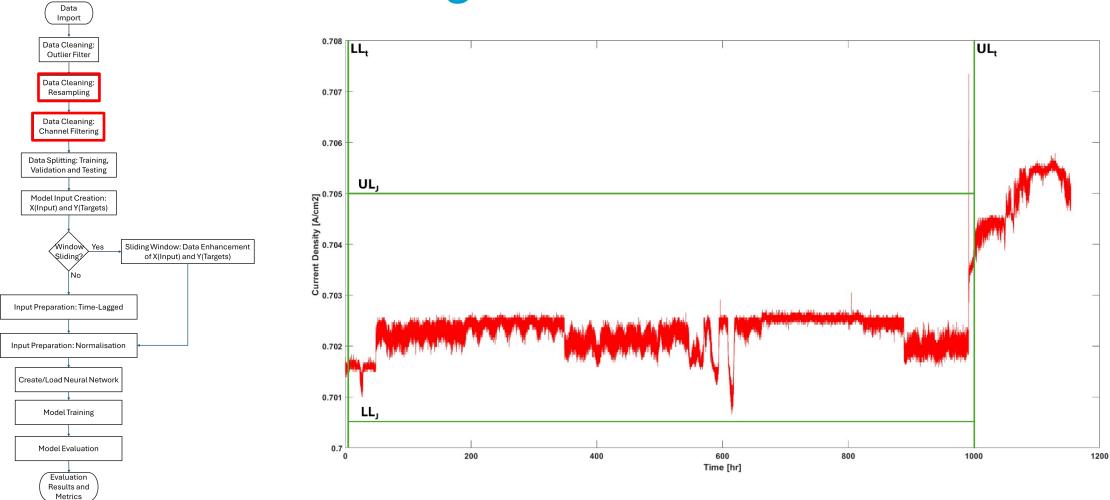


System Configuration: ASR RUL

		Voltage	Current Density	Efficiency	Fuel Utilisation
Base	System	0.69	180.7	52%	0.85
MS2	Stack 1	0.77	81.3	24%	0.32
	Stack 2	0.71	88.5	36%	0.49
	System	1.47	84.9	52%	0.65
MS2R-	Stack 1	0.77	94.9	36%	0.40
PR	Stack 2	0.74	70.4	43%	0.57
	System	1.51	82.6	62%	0.85
MS3	Stack 1	0.79	52.8	18%	0.32
	Stack 2	0.77	54.1	26%	0.32
	Stack 3	0.70	59.4	39%	0.46
	System	2.26	55.4	54%	0.75
MS3R-	Stack 1	0.82	50.8	22%	0.32
PR	Stack 2	0.84	49.6	33%	0.32
	Stack 3	0.81	51.6	48%	0.51
	System	2.47	50.7	67%	0.85

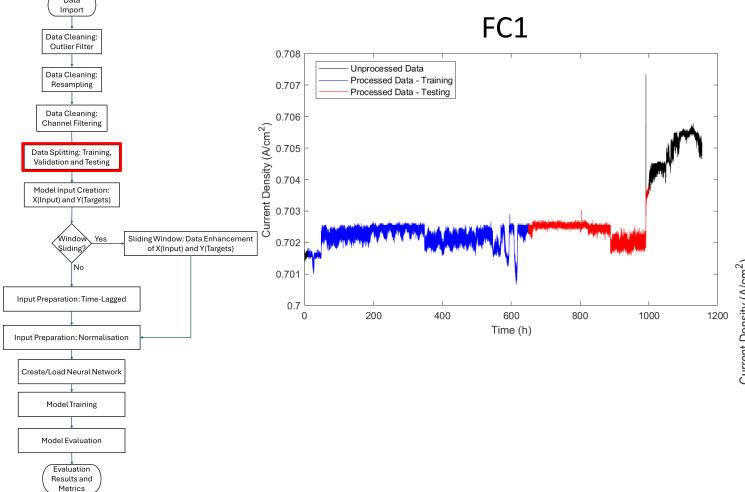


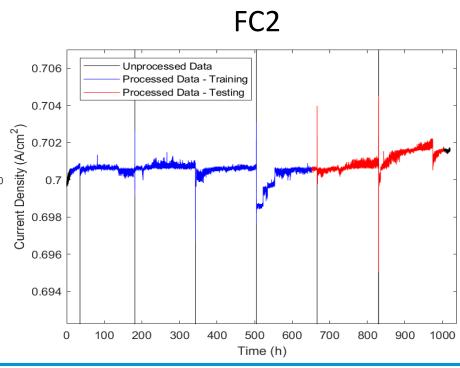
Al-Based Machine Learning



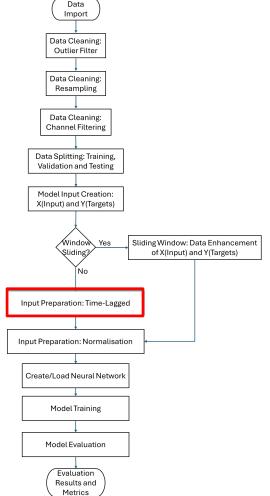
partners

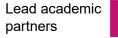
ML: Data Pre-Processing





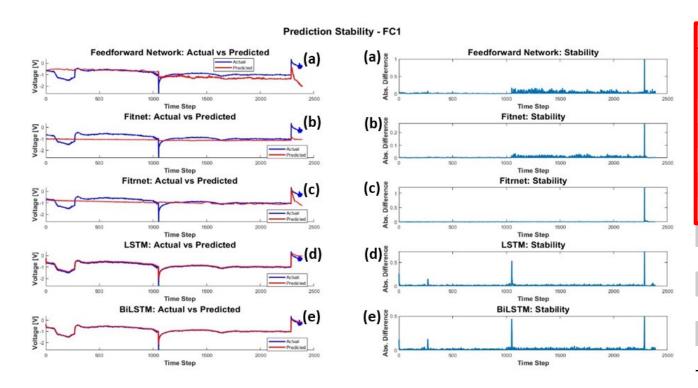
ML: Data Pre-Processing



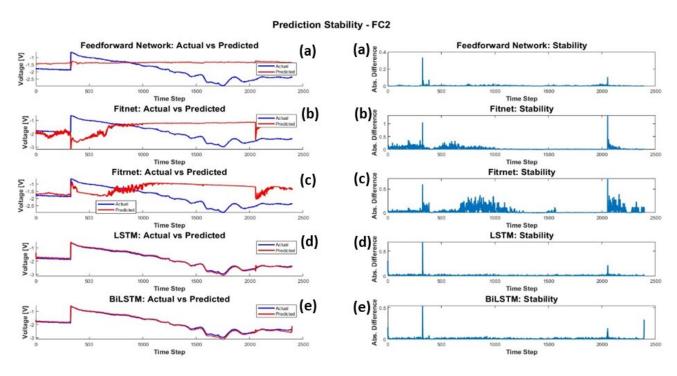

Time (h)	Current (A)	H ₂ , T _{in} (°C)	Voltage (V)
0	70.164	25.93	3.317
0.000156	70.164	25.945	3.317
0.000321	70.164	25.943	3.316
0.000475	70.164	25.945	3.316
0.000624	70.164	25.939	3.316
0.000794	70.164	25.956	3.317
0.000951	70.164	25.951	3.317
0.001103	70.164	25.939	3.317
0.001258	70.164	25.956	3.317
0.001409	70.164	25.951	3.316

Time (h)	Current (A)	H ₂ , T _{in} (°C)	Voltage (V)
0	70.164	25.93	3.317
0.000156	70.164	25.945	3.317
0.000321	70.164	25.943	3.316
0.000475	70.164	25.945	3.316
0.000624	70.164	25.939	3.316
0.000794	70.164	25.956	3.317
0.000951	70.164	25.951	3.317
0.001103	70.164	25.939	3.317
0.001258	70.164	25.956	3.317
0.001409	70.164	25.951	3.316

Time (h)	Current (A)	H ₂ , T _{in} (°C)	Voltage (V)
0	70.164	25.93	3.317
0.000156	70.164	25.945	3.317
0.000321	70.164	25.943	3.316
0.000475	70.164	25.945	3.316
0.000624	70.164	25.939	3.316
0.000794	70.164	25.956	3.317
0.000951	70.164	25.951	3.317
0.001103	70.164	25.939	3.317
0.001258	70.164	25.956	3.317
0.001409	70.164	25.951	3.316

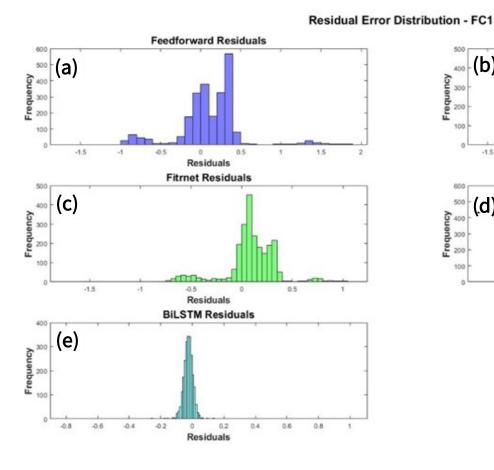


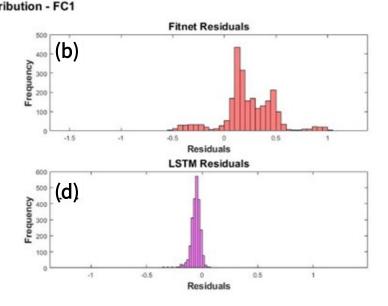
ML: Neural Network Selection


FC1						
METRIC	Feedfor ward	FitNet	FitrNet	LSTM	BiLSTM	
R2	-1.293	-0.564	0.022	0.977	0.991	
RMSE	0.419	0.346	0.274	0.090	0.053	
MSE	0.176	0.120	0.075	0.009	0.004	
MAE	0.291	0.287	0.197	0.064	0.033	
MAPE	106.155	110.939	58.237	0.125	0.065	
		F	C 2			
R2	-0.990	-2.016	-1.766	0.991	0.988	
RMSE	0.828	1.019	0.976	0.062	0.066	
MSE	0.685	1.038	0.952	0.014	0.018	
MAE	0.696	0.859	0.826	0.049	0.052	
MAPE	34.147	49.517	41.990	0.413	0.359	

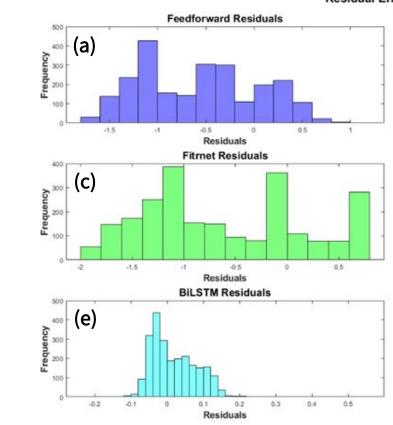
ML: Neural Network Selection

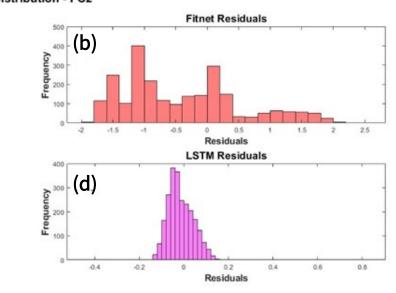
FC1						
METRIC	Feedfor ward	FitNet	FitrNet	LSTM	BiLSTM	
R2	-1.293	-0.564	0.022	0.977	0.991	
RMSE	0.419	0.346	0.274	0.090	0.053	
MSE	0.176	0.120	0.075	0.009	0.004	
MAE	0.291	0.287	0.197	0.064	0.033	
MAPE	106.155	110.939	58.237	0.125	0.065	
		F	C2			
R2	-0.990	-2.016	-1.766	0.991	0.988	
RMSE	0.828	1.019	0.976	0.062	0.066	
MSE	0.685	1.038	0.952	0.014	0.018	
MAE	0.696	0.859	0.826	0.049	0.052	
MAPE	34.147	49.517	41.990	0.413	0.359	





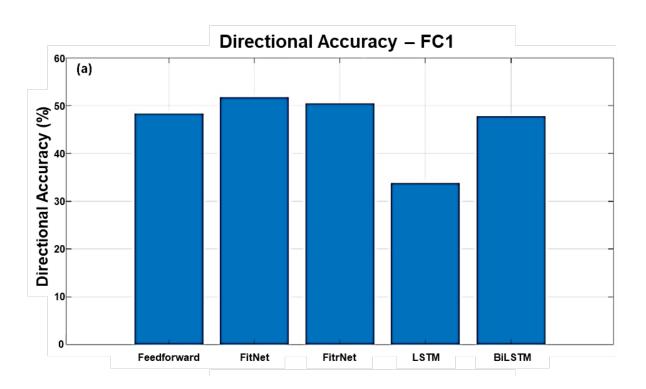
ML: Model Results and Validation

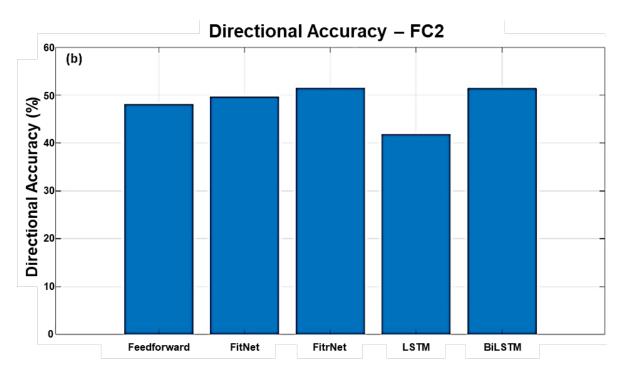




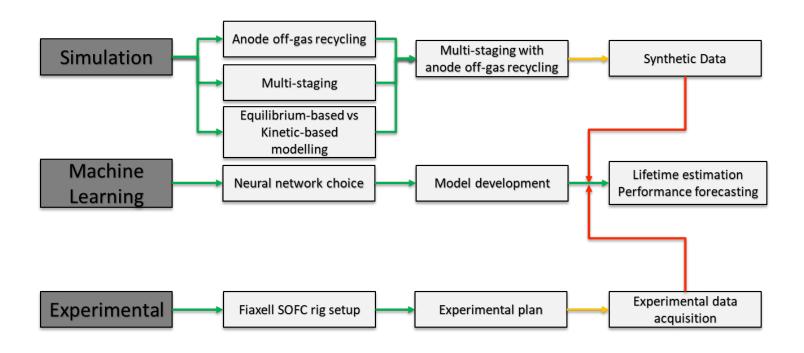
ML: Model Results and Validation

Residual Error Distribution - FC2





ML: Model Results and Validation



partners

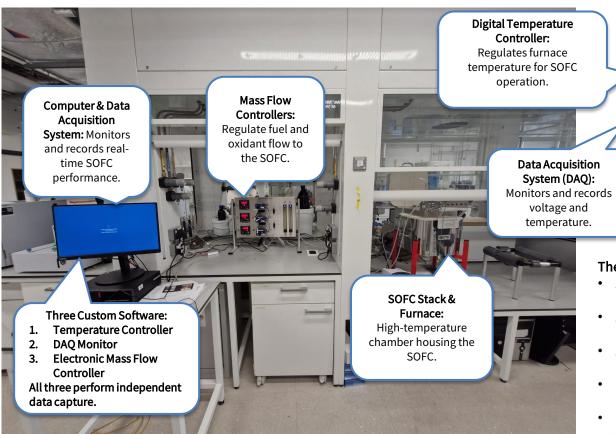
Experimental Work

Experimental Work

Fiaxell SOFC Commissioning

Experimental plan

Operational data acquisition


Electrochemical

Impedance Spectroscopy

(EIS) System (Ivium):

Conducts impedance

measurements for SOFC performance analysis.

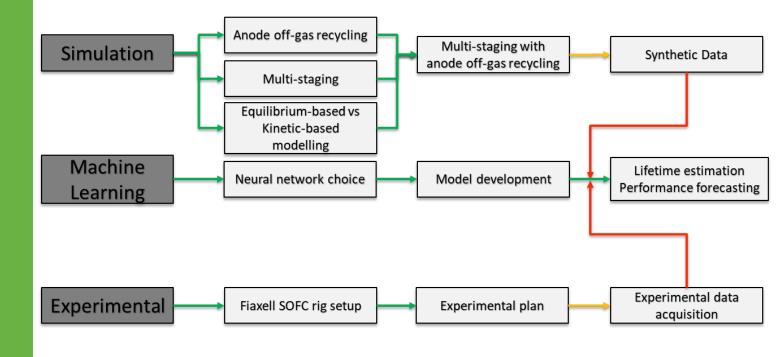
partners

The SOFC test rig includes:

- A temperature controller for precise thermal regulation.
- A data acquisition system (DAQ) for real-time monitoring.
- An electrochemical impedance spectroscopy (EIS) unit for advanced performance diagnostics.
- Supports both single-cell and short-stack configurations.
- Can operate with either pure hydrogen or methane as fuel.

Experimental Work: Future Plans

- Clearly demonstrate system performance degradation over time.
- Cover multiple operating modes.
- Include multiple scenarios (e.g., thermal cycling, dynamic loading).
- Provide data sufficient to extract reaction kinetics and degradation rates.

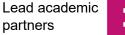

partners

Industrial standards typically require 40,000–90,000 hours of operational data for accurate kinetic modelling. However, for laboratory-based accelerated degradation studies, approximately 4,000 hours should be sufficient to develop conceptual models.

RESEARCH OVERVIEW

Thank you!

Presenter Name: Clyde-Theodore N Batista


Email: batistac@aston.ac.uk

Supervisor: Dr Amirpiran Amiri

Email: a.p.amiri@aston.ac.uk

